京公网安备 11010802034615号
经营许可证编号:京B2-20210330
pandas 是为了解决数据分析任务而创建的一种工具。pandas提供了大量能使我们快速便捷地处理数据的函数和方法,它是使Python成为强大而高效的数据分析环境的重要因素之一。今天小编就给大家分享一篇关于常见pandas函数的文章,希望对大家有所帮助。
文章来源: DeepHub IMBA
作者:P**nHub兄弟网站
pandas是一个受众广泛的python数据分析库。它提供了许多函数和方法来加快数据分析过程。pandas之所以如此普遍,是因为它的功能强大、灵活简单。本文将介绍20个常用的 Pandas 函数以及具体的示例代码,助力你的数据分析变得更加高效。
import numpy as np import pandas as pd
我们有时需要根据条件筛选数据,一个简单方法是query函数。为了更直观理解这个函数,我们首先创建一个示例 dataframe。
values_1 = np.random.randint(10, size=10) values_2 = np.random.randint(10, size=10) years = np.arange(2010,2020) groups = ['A','A','B','A','B','B','C','A','C','C'] df = pd.DataFrame({'group':groups, 'year':years, 'value_1':values_1,'value_2':values_2}) df
使用query函数的语法十分简单:
df.query('value_1 < value_2')
当我们想要在 dataframe 里增加一列数据时,默认添加在最后。当我们需要添加在任意位置,则可以使用 insert 函数。使用该函数只需要指定插入的位置、列名称、插入的对象数据。
# new column new_col = np.random.randn(10) # insert the new column at position 2 df.insert(2, 'new_col', new_col) df
示例dataframe 包含3个小组的年度数据。我们可能只对年度数据感兴趣,但在某些情况下,我们同样还需要一个累计数据。Pandas提供了一个易于使用的函数来计算加和,即cumsum。
如果我们只是简单使用cumsum函数,(A,B,C)组别将被忽略。这样得到的累积值在某些情况下意义不大,因为我们更需要不同小组的累计数据。对于这个问题有一个非常简单方便的解决方案,我们可以同时应用groupby和cumsum函数。
df['cumsum_2'] = df[['value_2','group'].groupby('group').cumsum()]
df
Sample方法允许我们从DataFrame中随机选择数据。当我们想从一个分布中选择一个随机样本时,这个函数很有用。
sample1 = df.sample(n=3) sample1
上述代码中,我们通过指定采样数量 n 来进行随机选取。此外,也可以通过指定采样比例 frac 来随机选取数据。当 frac=0.5时,将随机返回一般的数据。
sample2 = df.sample(frac=0.5) sample2
为了获得可重复的样品,我们可以指定random_state参数。如果将整数值传递给random_state,则每次运行代码时都将生成相同的采样数据。
where函数用于指定条件的数据替换。如果不指定条件,则默认替换值为 NaN。
df['new_col'].where(df['new_col'] > 0, 0)
where函数首先根据指定条件定位目标数据,然后替换为指定的新数据。上述代码中,where(df['new_col']>0,0)指定'new_col'列中数值大于0的所有数据为被替换对象,并且被替换为0。
重要的一点是,pandas 和 numpy的where函数并不完全相同。我们可以得到相同的结果,但语法存在差异。Np.where还需要指定列对象。以下两行返回相同的结果:
df['new_col'].where(df['new_col'] > 0, 0) np.where(df['new_col'] > 0, df['new_col'], 0)
在处理数据帧时,我们经常使用过滤或选择方法。Isin是一种先进的筛选方法。例如,我们可以根据选择列表筛选数据。
years = ['2010','2014','2017'] df[df.year.isin(years)]
Loc 和 iloc 函数用于选择行或者列。
loc用于按标签选择数据。列的标签是列名。对于行标签,如果我们不分配任何特定的索引,pandas默认创建整数索引。因此,行标签是从0开始向上的整数。与iloc一起使用的行位置也是从0开始的整数。
下述代码实现选择前三行前两列的数据(iloc方式):
df.iloc[:3,:2]
下述代码实现选择前三行前两列的数据(loc方式):
df.loc[:2,['group','year']]
注:当使用loc时,包括索引的上界,而使用iloc则不包括索引的上界。
下述代码实现选择"1","3","5"行、"year","value_1"列的数据(loc方式):
df.loc[[1,3,5],['year','value_1']]
此函数用于计算一系列值的变化百分比。假设我们有一个包含[2,3,6]的序列。如果我们对这个序列应用pct_change,则返回的序列将是[NaN,0.5,1.0]。从第一个元素到第二个元素增加了50%,从第二个元素到第三个元素增加了100%。Pct_change函数用于比较元素时间序列中的变化百分比。
df.value_1.pct_change()
Rank函数实现对数据进行排序。假设我们有一个包含[1,7,5,3]的序列。分配给这些值的等级为[1,4,3,2]。
df['rank_1'] = df['value_1'].rank() df
Melt用于将维数较大的 dataframe转换为维数较少的 dataframe。一些dataframe列中包含连续的度量或变量。在某些情况下,将这些列表示为行可能更适合我们的任务。考虑以下情况:
我们有三个不同的城市,在不同的日子进行测量。我们决定将这些日子表示为列中的行。还将有一列显示测量值。我们可以通过使用'melt'函数轻松实现:
df_wide.melt(id_vars=['city']) df
变量名和列名通常默认给出。我们也可以使用melt函数的var_name和value_name参数来指定新的列名。
假设数据集在一个观测(行)中包含一个要素的多个条目,但您希望在单独的行中分析它们。
我们想在不同的行上看到“c”的测量值,这很容易用explode来完成。
df1.explode('measurement').reset_index(drop=True)
df
Nunique统计列或行上的唯一条目数。它在分类特征中非常有用,特别是在我们事先不知道类别数量的情况下。让我们看看我们的初始数据:
df.year.nunique() 10 df.group.nunique() 3
我们可以直接将nunique函数应用于dataframe,并查看每列中唯一值的数量:
如果axis参数设置为1,nunique将返回每行中唯一值的数目。
'lookup'可以用于根据行、列的标签在dataframe中查找指定值。假设我们有以下数据:
我们要创建一个新列,该列显示“person”列中每个人的得分:
df['Person_point'] = df.lookup(df.index, df['Person']) df
Pandas支持广泛的数据类型,其中之一就是object。object包含文本或混合(数字和非数字)值。但是,如果有其他选项可用,则不建议使用对象数据类型。使用更具体的数据类型,某些操作执行得更快。例如,对于数值,我们更喜欢使用整数或浮点数据类型。
infer_objects尝试为对象列推断更好的数据类型。考虑以下数据:
df2.dtypes A object B object C object D object dtype: object
通过上述代码可知,现有所有的数据类型默认都是object。让我们看看推断的数据类型是什么:
df2.infer_objects().dtypes A int64 B float64 C bool D object dtype: object
'infer_obejects'可能看起来微不足道,但在有很多列时作用巨大。
Memory_usage()返回每列使用的内存量(以字节为单位)。考虑下面的数据,其中每一列有一百万行。
df_large = pd.DataFrame({'A': np.random.randn(1000000), 'B': np.random.randint(100, size=1000000)}) df_large.shape (1000000, 2)
每列占用的内存:
df_large.memory_usage() Index 128 A 8000000 B 8000000 dtype: int64
整个 dataframe 占用的内存(转换为以MB为单位):
df_large.memory_usage().sum() / (1024**2) #converting to megabytes 15.2589111328125
describe函数计算数字列的基本统计信息,这些列包括计数、平均值、标准偏差、最小值和最大值、中值、第一个和第三个四分位数。因此,它提供了dataframe的统计摘要。
Merge()根据共同列中的值组合dataframe。考虑以下两个数据:
我们可以基于列中的共同值合并它们。设置合并条件的参数是“on”参数。
df1和df2是基于column_a列中的共同值进行合并的,merge函数的how参数允许以不同的方式组合dataframe,如:“inner”、“outer”、“left”、“right”等。
Select_dtypes函数根据对数据类型设置的条件返回dataframe的子集。它允许使用include和exlude参数包含或排除某些数据类型。
df.select_dtypes(include='int64')
df.select_dtypes(exclude='int64')
顾名思义,它允许替换dataframe中的值。第一个参数是要替换的值,第二个参数是新值。
df.replace('A', 'A_1')
我们也可以在同一个字典中多次替换。
df.replace({'A':'A_1', 'B':'B_1'})
Applymap用于将一个函数应用于dataframe中的所有元素。请注意,如果操作的矢量化版本可用,那么它应该优先于applymap。例如,如果我们想将每个元素乘以一个数字,我们不需要也不应该使用applymap函数。在这种情况下,简单的矢量化操作(例如df*4)要快得多。
然而,在某些情况下,我们可能无法选择矢量化操作。例如,我们可以使用pandas dataframes的style属性更改dataframe的样式。以下代码将负值的颜色设置为红色:
def color_negative_values(val): color = 'red' if val < 0 else 'black' return 'color: %s' % color
通过Applymap将上述代码应用到dataframe:
df3.style.applymap(color_negative_values)
作者:Soner Yıldırım
deephub翻译组:Oliver Lee
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24