京公网安备 11010802034615号
经营许可证编号:京B2-20210330
卡方分布是著名的三大抽样分布之一,在各种统计检验中都有着重要的意义。小编今天就跟大家分享一下有关卡方分布的一些理论知识,希望对于大家有所帮助。
一、什么是卡方分布?
1、卡方分布来源
卡方分布是阿贝(Abbe)在1863年首次提出的,后来由海尔墨特(Hermert)以及现代统计学的奠基人之一的卡·皮尔逊(C.K. Pearson)分别在1875年和1900年推导出来,是统计学中的非常实用的一个有名的分布。
2、卡方分布定义
概率密度
设X为自由度为的卡方随机变量, 那么它的概率密度函数就是
R代码绘制:
x <- seq(0, 60, 0.005)
f_nx <- function(x, n){
x^(n/2-1)*exp(-x/2)/(2^(n/2)*gamma(n/2))
}
## 当然你也可以用R自带的 dchisq()函数来计算概率密度
n <- 1
plot(x, f_nx(x, n), type='l', ylim=c(0, 0.25), ylab=expression(f[n](x)))
text(3, 0.25, paste('n =', n))
n <- 4
lines(x, f_nx(x, n), type='l', col='red')
text(5, 0.17, paste('n =', n) , col='red')
n <- 10
lines(x, f_nx(x, n), type='l', col='blue')
text(12, 0.1, paste('n =', n) , col='blue')
n <- 20
lines(x, f_nx(x, n), type='l', col='purple')
text(20, 0.075, paste('n =', n) , col='purple')
n <- 30
lines(x, f_nx(x, n), type='l', col='green')
text(30, 0.062, paste('n =', n) , col='green')
n <- 40
lines(x, f_nx(x, n), type='l', col='pink')
text(44, 0.05, paste('n =', n) , col='pink')
当自由度n越大,概率密度曲线越趋于对称
4、χ2 变量性质:
卡方分布拥有具有k个自由度的,是一个由k个独立标准正态随机变量的和而构成的分布通常用于卡方检验中。
二、什么是卡方检验?
1、卡方检验是一种用途很广的计数资料的假设检验方法。属于非参数检验,主要是对两个或两个以上样本率( 构成比)以及两个分类变量的关联性分析进行对比。卡方检验的根本思想就是比较理论频数和实际频数的吻合程度或者拟合优度问题。/2、卡方检验的计算公式为:
其中,A是实际值,T是理论值。
x2是用于衡量实际值与理论值的差异程度的,这也是卡方检验的核心思想,其主要包含了以下两个信息:
1. 实际值与理论值偏差的绝对大小(由于平方的存在,差异是被放大的)
2. 差异程度与理论值的相对大小
3、
对某无序分类变量各水平在两组或多组间的分布是否一致进行考察可以说是卡方检验最主要的用途了,除此之外.卡方检验还有很多其他用途。主要可以分为以下几个方面:
(1)检验某个连续变量的分布与某种理论分布是否一致。
(2)检验某个分类变量各类出现的概率与指定概率是否一致。
(3)检验某两种方法的结果是否保持一致。
(4)检验某两个分类变量是不是相互独立的。
(5)检验控制某种或者某几种分类因素的作用之后,判断两个分类变量是不是相互独立的。
推荐学习书籍
《CDA一级教材》适合CDA一级考生备考,也适合业务及数据分析岗位的从业者提升自我。完整电子版已上线CDA网校,累计已有10万+在读~

免费加入阅读:https://edu.cda.cn/goods/show/3151?targetId=5147&preview=0
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在企业数据化运营体系中,同比、环比分析是洞察业务趋势、评估运营效果的核心手段。同比(与上年同期对比)可消除季节性波动影响 ...
2025-12-19在数字化时代,用户已成为企业竞争的核心资产,而“理解用户”则是激活这一资产的关键。用户行为分析系统(User Behavior Analys ...
2025-12-19在数字化转型的深水区,企业对数据价值的挖掘不再局限于零散的分析项目,而是转向“体系化运营”——数据治理体系作为保障数据全 ...
2025-12-19在数据科学的工具箱中,析因分析(Factor Analysis, FA)、聚类分析(Clustering Analysis)与主成分分析(Principal Component ...
2025-12-18自2017年《Attention Is All You Need》一文问世以来,Transformer模型凭借自注意力机制的强大建模能力,在NLP、CV、语音等领域 ...
2025-12-18在CDA(Certified Data Analyst)数据分析师的时间序列分析工作中,常面临这样的困惑:某电商平台月度销售额增长20%,但增长是来 ...
2025-12-18在机器学习实践中,“超小数据集”(通常指样本量从几十到几百,远小于模型参数规模)是绕不开的场景——医疗领域的罕见病数据、 ...
2025-12-17数据仓库作为企业决策分析的“数据中枢”,其价值完全依赖于数据质量——若输入的是缺失、重复、不一致的“脏数据”,后续的建模 ...
2025-12-17在CDA(Certified Data Analyst)数据分析师的日常工作中,“随时间变化的数据”无处不在——零售企业的每日销售额、互联网平台 ...
2025-12-17在休闲游戏的运营体系中,次日留存率是当之无愧的“生死线”——它不仅是衡量产品核心吸引力的首个关键指标,更直接决定了后续LT ...
2025-12-16在数字化转型浪潮中,“以用户为中心”已成为企业的核心经营理念,而用户画像则是企业洞察用户、精准决策的“核心工具”。然而, ...
2025-12-16在零售行业从“流量争夺”转向“价值深耕”的演进中,塔吉特百货(Target)以两场标志性实践树立了行业标杆——2000年后的孕妇精 ...
2025-12-15在统计学领域,二项分布与卡方检验是两个高频出现的概念,二者都常用于处理离散数据,因此常被初学者混淆。但本质上,二项分布是 ...
2025-12-15在CDA(Certified Data Analyst)数据分析师的工作链路中,“标签加工”是连接原始数据与业务应用的关键环节。企业积累的用户行 ...
2025-12-15在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11