京公网安备 11010802034615号
经营许可证编号:京B2-20210330
feature importance,根据含义就能理解,也就是特征重要性,在预测建模项目中起着非常重要作用,能够提供对数据、模型的见解,和如何进行降维和选择特征,并以此来提高预测模型的的效率和有效性。今天小编为大家带来的是如何理解随机森林中的feature importance,希望对大家有所帮助。
一、简单了解feature importance
实际情况中,一个数据集中往往包含数以万计个特征,如何在其中选择出,结果影响最大的几个特征,并通过这种方法缩减建立模型时的特征数,这是我们最为关心的问题。今天要介绍的是:用随机森林来对进行特征筛选。
用随机森林进行特征重要性评估的思想其实非常简单,简单来说,就是观察每个特征在随机森林中的每颗树上做了多少贡献,然后取平均值,最后对比特征之间的贡献大小。
总结一下就是:特征重要性是指,在全部单颗树上此特征重要性的一个平均值,而单颗树上特征重要性计算方法事:根据该特征进行分裂后平方损失的减少量的求和。
二、feature importance评分作用
1.特征重要性分可以凸显出特征与目标的相关相关程度,能够帮助我们了解数据集
2.特征重要性得分可以帮助了解模型
特征重要性得分通常是通过数据集拟合出的预测模型计算的。查看重要性得分能够洞悉此特定模型,以及知道在进行预测时特征的重要程度。
3.特征重要性能够用于改进预测模型
我们可以通过特征重要性得分来选择要删除的特征(即得分最低的特征)或者需要保留的特征(即得分最高的特征)。这其实是一种特征选择,能够简化正在建模的问题,加快建模过程,在某些情况下,还能够改善模型的性能。
三、python实现随机森林feature importances
import xlrd import csv import numpy as np import pandas as pd import matplotlib.pyplot as plt from scipy.interpolate import spline #设置路径 path='/Users/kqq/Documents/postgraduate/烟叶原始光谱2017.4.7数字产地.csv' #读取文件 df = pd.read_csv(path, header = 0) #df.info() #训练随机森林模型 from sklearn.cross_validation import train_test_split from sklearn.ensemble import RandomForestClassifier x, y = df.iloc[:, 1:].values, df.iloc[:, 0].values x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3, random_state = 0) feat_labels = df.columns[1:] forest = RandomForestClassifier(n_estimators=10000, random_state=0, n_jobs=-1) forest.fit(x_train, y_train) #打印特征重要性评分 importances = forest.feature_importances_ #indices = np.argsort(importances)[::-1] imp=[] for f in range(x_train.shape[1]): print(f + 1, feat_labels[f], importances[f]) #将打印的重要性评分copy到featureScore.xlsx中;plot特征重要性 #设置路径 path='/Users/kqq/Documents/postgraduate/实验分析图/featureScore.xlsx' #打开文件 myBook=xlrd.open_workbook(path) #查询工作表 sheet_1_by_index=myBook.sheet_by_index(0) data=[] for i in range(0,sheet_1_by_index.nrows): data.append(sheet_1_by_index.row_values(i)) data=np.array(data) X=data[:1,].ravel() y=data[1:,] plt.figure(1,figsize=(8, 4)) i=0 print(len(y)) while i![]()
相信读完上文,你对算法已经有了全面认识。若想进一步探索机器学习的前沿知识,强烈推荐机器学习之半监督学习课程。
学习入口:https://edu.cda.cn/goods/show/3826?targetId=6730&preview=0
涵盖核心算法,结合多领域实战案例,还会持续更新,无论是新手入门还是高手进阶都很合适。赶紧点击链接开启学习吧!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21