
在数据处理过程中,经常会遇到偏态数据。我们都知道数据整体服从正态分布,那样本均值和方差则相互独立。因此大家都会希望数据事成正态分布的,但是现实情况却是:大多数情况下,数据都是偏态分布的,这时候就需要我们将偏态数据正态化。今天,小编跟大家分享的就是将偏态数据正态化的处理方法,希望对大家研究和学习偏态数据有所帮助。
由图中可知,正态分布,两头低,中间高,整个形态是对称钟形的一个分布的状态。大量连续数据测量时,我们最希望的就是数据可以成这种状态,也就是正态分布,一个标准的正态分布是u(均值)=0.σ(标准差)=1.
横坐标代表随机变量X的一个取值,在均值(u=0)附近概率密度最大,越偏离均值,概率密度减小,不在(u-3σ,u+3σ)范围内的数据就属于统计学意义上的异常值了。
根据图中可以看出,偏态分布,分为两种情况,左偏又叫负偏态,以及右偏又叫正偏态,也可以用偏度来表示,偏度>0.也就是频数分布的高峰向左偏移,呈右(正)偏态分布;偏度<0.即频数分布的高峰向右偏移,呈左(负)偏态分布;|偏度|>1.呈高度偏态,0.5<|偏度|<1.呈中等偏态。
二、检验数据是否服从正态分布
rom scipy.stats import norm sns.distplot(train['SalePrice'],fit=norm) #均值和方差 (mu,sigma) = norm.fit(train['SalePrice']) print('n mu = {:.2f} and sigma = {:.2f}n'.format(mu, sigma)) plt.legend(['Normal dist. ($mu=$ {:.2f} and $sigma=$ {:.2f} )'.format(mu, sigma)], loc='best') plt.ylabel('Frequency') plt.title('SalePrice distribution') fig =plt.figure() res = stats.probplot(train['SalePrice'], plot=plt) plt.show()
三、偏态数据处理
如果检测到数据是呈偏态分布,我们需要将其其变换为正态分布,常用的几种变换方式为:
1、对数变换:即将原始数据X的对数值作为新的分布数据,适用于相乘关系的数据、高度偏态的数据
2、平方根变换:即即将原始数据X的平方根作为新的分布数据。适用于泊松分布(方差与均数近似相等)的数据、轻度偏态的数据
3、倒数变换1/x:即将原始数据X的倒数作为新的分析数据。适用于两端波动较大的数据
4、反正弦变换:即将原始数据X的平方根反正弦值做为新的分析数据。适用于百分比的数据、中度偏态的数据
#用对数化解决偏态 log(1+x) train['SalePrice'] = np.log1p(train['SalePrice']) sns.distplot(train['SalePrice'],fit=norm) (mu, sigma) = norm.fit(train['SalePrice']) print( 'n mu = {:.2f} and sigma = {:.2f}n'.format(mu, sigma)) #Now plot the distribution plt.legend(['Normal dist. ($mu=$ {:.2f} and $sigma=$ {:.2f} )'.format(mu, sigma)], loc='best') plt.ylabel('Frequency') plt.title('SalePrice distribution') #Get also the QQ-plot fig = plt.figure() res = stats.probplot(train['SalePrice'], plot=plt) plt.show()
相关性分析是一项重要的数据分析工具,可以帮助我们理解变量之间的关系并做出相应的推断。通过散点图、相关系数和回归分析等方法,我们可以定量地衡量变量之间的相关程度,并将其应用于各个领域的研究与实践中。深入理解相关性分析的原理和应用,对于数据科学家和决策者来说都是至关重要的技能。
想深入学习统计学知识,为数据分析筑牢根基?那快来看看统计学极简入门课程!
学习入口:https://edu.cda.cn/goods/show/3386?targetId=5647&preview=0
课程由专业数据分析师打造,完全免费,60 天有效期且随到随学。它用独特思路讲重点,从数据种类到统计学体系,内容通俗易懂。学完它,能让你轻松入门统计学,还能提升数据分析能力。赶紧点击链接开启学习,让自己在数据领域更上一层楼!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-29从数据到决策:CDA 数据分析师如何重塑职场竞争力与行业价值 在数字经济席卷全球的今天,数据已从 “辅助工具” 升级为 “核心资 ...
2025-07-292025 年 CDA 数据分析师考纲焕新,引领行业人才新标准 在数字化浪潮奔涌向前的当下,数据已成为驱动各行业发展的核心要素。作为 ...
2025-07-29