
HDFS 全称为Hadoop Distributed File System,是 hadoop 分布式文件系统,具体来说,是指被设计成适合运行在通用硬件(commodity hardware)上的分布式文件系统(Distributed File System)。最主要的作用是作为 Hadoop 生态中各系统的存储服务。HDFS是Hadoop项目的核心子项目,为分布式计算中,数据存储管理的基础,HDFS是基于流数据模式访问和处理超大文件的需求被开发出来的,能够在廉价的商用服务器上运行。HDFS 具有高容错性、高可靠性、高可扩展性、高获得性、高吞吐率等特征,这些特征使得HDFS为海量数据提供了不怕故障的存储,从而为超大数据集(Large Data Set)的应用处理带来了很多便利。
高度容错性:HDFS 最核心的架构目标是,错误检测和快速、自动的恢复 。数据会自动保存多个副本。它通过增加副本的形式,而且就算某一副本丢失,HDFS也能自动恢复。
支持大规模数据集: HDFS 应用具有很大的数据集,可以支持整体上高的数据传输带宽,并且能够支撑数以千万集的文件。
支持流式读取数据: 一次写入,多次读取。而且文件一旦写入,就不能进行修改,只能追加。这样很好的保证了数据的一致性。
高吞吐量:吞吐量是指单位时间内完成的工作量。HDFS通过并行处理数据,从而大大减少了处理时间,实现了高吞吐量。
移动计算而非移动数据:一个应用的请求,如果离它操作的数据越近就会越高效,HDFS会把数据位置暴露给计算框架, 提供了将它们自己移动到数据附近的接口。
异构软硬件平台间的可移植性:平台的可移植性,方便用户也方便 HDFS 作为大规模数据应用平台的推广。
二、HDFS 常用命令参数
-help | 输出这个命令参数手册 |
-ls | 显示目录信息 |
-mkdir | 在hdfs上创建目录 |
-moveFromLocal | 从本地剪切粘贴到hdfs |
-moveToLocal | 从hdfs剪切粘贴到本地 |
--appendToFile | 追加一个文件到已经存在的文件末尾 |
-cat | 显示文件内容 |
-tail | 显示一个文件的末尾 |
-text | 以字符形式打印一个文件的内容 |
-chgrp、-chmod、-chown | 同linux文件系统中的用法,对文件所属权限 |
-copyFromLocal | 从本地文件系统中拷贝文件到hdfs路径去 |
-copyToLocal | 从hdfs拷贝到本地 |
-cp | 从hdfs的一个路径拷贝hdfs的另一个路径 |
-mv | 在hdfs目录中移动文件 |
-get | 等同于copyToLocal,就是从hdfs下载文件到本地 |
-getmerge | 合并下载多个文件 |
-put | 等同于copyFromLocal |
-rm | 删除文件或文件夹 |
-rmdir | 删除空目录 |
-df | 统计文件系统的可用空间信息 |
-du | 统计文件夹的大小信息 |
-count | 统计一个指定目录下的文件节点数量 |
-setrep | 设置hdfs中文件的副本数量 |
三、HDFS工作机制
1. HDFS集群包括两大角色:NameNode、DataNode
2. NameNode负责管理整个文件系统的元数据
3. DataNode 负责管理用户的文件数据块
4. 文件会按照固定的大小(blocksize)切分成若干块后,分布式存储于若干台datanode上
5. 每一个文件块能够有多个副本,并存放在不同的datanode上
6. Datanode定期会向Namenode汇报自身保存的文件block信息,而namenode就会负责保持文件的副本数量
7. HDFS的内部工作机制对客户端保持透明,客户端请求访问HDFS都是以通过向namenode申请进行的
HDFS文件写入时:首先要跟namenode通信以确认可以写文件并获得接收文件block的datanode,然后,客户端按顺序将文件逐个block传递给相应datanode,并由接收到block的datanode负责向其他datanode复制block的副本
HDFS文件读取:将要读取的文件路径发送给namenode,namenode获取文件的元信息(主要是block的存放位置信息)返回给客户端,客户端根据返回的信息找到相应datanode逐个获取文件的block并在客户端本地进行数据追加合并从而获得整个文件
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
PowerBI 累计曲线制作指南:从 DAX 度量到可视化落地 在业务数据分析中,“累计趋势” 是衡量业务进展的核心视角 —— 无论是 “ ...
2025-08-15Python 函数 return 多个数据:用法、实例与实战技巧 在 Python 编程中,函数是代码复用与逻辑封装的核心载体。多数场景下,我们 ...
2025-08-15CDA 数据分析师:引领商业数据分析体系构建,筑牢企业数据驱动根基 在数字化转型深化的今天,企业对数据的依赖已从 “零散分析” ...
2025-08-15随机森林中特征重要性(Feature Importance)排名解析 在机器学习领域,随机森林因其出色的预测性能和对高维数据的适应性,被广 ...
2025-08-14t 统计量为负数时的分布计算方法与解析 在统计学假设检验中,t 统计量是常用的重要指标,其分布特征直接影响着检验结果的判断。 ...
2025-08-14CDA 数据分析师与业务数据分析步骤 在当今数据驱动的商业世界中,数据分析已成为企业决策和发展的核心驱动力。CDA 数据分析师作 ...
2025-08-14前台流量与后台流量:数据链路中的双重镜像 在商业数据分析体系中,流量数据是洞察用户行为与系统效能的核心依据。前台流量与 ...
2025-08-13商业数据分析体系构建与 CDA 数据分析师的协同赋能 在企业数字化转型的浪潮中,商业数据分析已从 “可选工具” 升级为 “核 ...
2025-08-13解析 CDA 数据分析师:数据时代的价值挖掘者 在数字经济高速发展的今天,数据已成为企业核心资产,而将数据转化为商业价值的 ...
2025-08-13解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-08-12MySQL 统计连续每天数据:从业务需求到技术实现 在数据分析场景中,连续日期的数据统计是衡量业务连续性的重要手段 —— 无论是 ...
2025-08-12PyTorch 中 Shuffle 机制:数据打乱的艺术与实践 在深度学习模型训练过程中,数据的呈现顺序往往对模型性能有着微妙却关键的影响 ...
2025-08-12Pandas 多列条件筛选:从基础语法到实战应用 在数据分析工作中,基于多列条件筛选数据是高频需求。无论是提取满足特定业务规则的 ...
2025-08-12人工智能重塑 CDA 数据分析领域:从工具革新到能力重构 在数字经济浪潮与人工智能技术共振的 2025 年,数据分析行业正经历着前所 ...
2025-08-12游戏流水衰退率:计算方法与实践意义 在游戏行业中,流水(即游戏收入)是衡量一款游戏商业表现的核心指标之一。而游戏流水衰退 ...
2025-08-12CDA 一级:数据分析入门的基石 在当今数据驱动的时代,数据分析能力已成为职场中的一项重要技能。CDA(Certified Data Anal ...
2025-08-12破解游戏用户流失困局:从数据洞察到留存策略 在游戏行业竞争白热化的当下,用户流失率已成为衡量产品健康度的核心指标。一款游 ...
2025-08-11数据时代的黄金入场券:CDA 认证解锁职业新蓝海 一、万亿级市场需求下的数据分析人才缺口 在数字化转型浪潮中,数据已成为企业核 ...
2025-08-11DBeaver 实战:实现两个库表结构同步的高效路径 在数据库管理与开发工作中,保持不同环境(如开发库与生产库、主库与从库)的表 ...
2025-08-08t 检验与卡方检验:数据分析中的两大统计利器 在数据分析领域,统计检验是验证假设、挖掘数据规律的重要手段。其中,t 检验和卡 ...
2025-08-08