京公网安备 11010802034615号
经营许可证编号:京B2-20210330
Affinity Propogation最初是由Brendan Frey 和 Delbert Dueck于2007年在Science上提出的。相比其它的层次聚类算法,Affinity Propogation算法不需要预先指定聚类个数。
Affinity Propogation算法的原理可以简单的概括为:每一个数据点都会给其它的多有点发送信息,告知其它所有点每个目标对发送者(sender)的相对吸引力的目标值(target)。
随后,鉴于从所有其它sender收到信息的“attractiveness”,每个target所有sender一个回复,以告知与sender相联系的每一个sender的可用性。sender会给target回复相关信息,以告知每一个target对sender修正的相对“attractiveness”(基于从所有target收到的关于可用性的信息)。信息传递的整个过程直到达成一致才会停止。
一旦sender与某个target相联系,这个target就会称为该点(sender)的“典型代表(exemplar)”。所有被相同exemplar标记的点都被放置在一个聚类中。
假定一个如下的数据集。每一个参与者代表一个五维空间的数据点。
相似性矩阵(C)
除了在对角线上的元素外,其它的元素是负的均方误差作为两个数据间的相似值。
计算公式如下:c(i, j) = -||X_i-X_y||^2c(i,j)=−∣∣Xi−Xy∣∣2以Alice和Bob为例,两者间的相似性计算过程如下:(3-4)^2+(4-3)^2+(3-5)^2+(2-1)^2+(1-1)^2 = 7(3−4)2+(4−3)2+(3−5)2+(2−1)2+(1−1)2=7。
因此,Alice与Bob之间的相似值为-7。
相似性值的计算边界出现在Bob和Edna间:(4-1)^2+(3-1)^2+(5-3)^2+(1-2)^2+(1-3)^2 = 22(4−1)2+(3−1)2+(5−3)2+(1−2)2+(1−3)2=22Bob和Edna之间的相似值为-22。
通过逐步的计算,最后得到的结果如下:
一般对角线上的元素取相似值中较小的数,在本例中取值为-22,因此,得到的相似性矩阵如下:
Responsibility Matrix ®
这里的responsibility matrix 是中间的过度步骤。通过使用如下的公式计算responsibility matrix:r(i, k ) \leftarrow s(i, k)- max_{k^{'} such\ that\ k^{'} \not= \ k} \{a(i, k^{'})+s(i, k^{'})\},r(i,k)←s(i,k)−maxk′such that k′= k{a(i,k′)+s(i,k′)},其中,i表示协同矩阵的行,k表示列的关联矩阵。
例如,r(Alice, Bob)r(Alice,Bob)的值为-1, 首先提取similarity matrix中c(Alice, Bob)c(Alice,Bob)的值为-7, 减去similarity matrix中Alice行的最大值为-6,因此,得到r(Alice, Bob)=-1r(Alice,Bob)=−1。
取值的边界为r(Cary, Doug)r(Cary,Doug),其计算如下:
r(Cary, Doug) = -18-(-6)=-12r(Cary,Doug)=−18−(−6)=−12
根据上述公式计算得到的最终结果如下图所示:
Availability Matrix (a)
Availability Matrix的初始值为矩阵中的所有元素均为0。
首先,计算对角线上的元素值:a(k,k) \leftarrow \sum_{i^{'}such \ that \ i^{'} \not= k} max\{0, r\{i^{'}, k\}\},a(k,k)←i′such that i′=k∑max{0,r{i′,k}},其中,i表示协同矩阵的行,k表示协同矩阵的列。
实际上,上面的公式只告诉你沿着列,计算所有行与0比较的最大值(除列序与行序相等时的情况除外)。
例如,a(Alice, Alice)a(Alice,Alice)的计算如下:a(Alice, Alice) = 10+11+0+0 = 21a(Alice,Alice)=10+11+0+0=21
其次,计算非对角线上的元素值,分别以a(Alice, Cary)a(Alice,Cary)和a(Doug, Edna)a(Doug,Edna)为例,其计算过程如下所示:
a(Alice, Cary) = 1+0+0+0 = 1 \\ a(Doug, Edna)
= 0+0+0+9 = 9a(Alice,Cary)
=1+0+0+0=1a(Doug,Edna)
=0+0+0+9=9
以下公式是用于更新Availability Matrix,其公式如下:a(i, k) \leftarrow min\{0, r(k,k)+\sum_{i^{'} such \ that \ i^{'} \notin \{i, k\}} max{\{0, r(i^{'}, k)}\}\}a(i,k)←min{0,r(k,k)+i′such that i′∈/{i,k}∑max{0,r(i′,k)}}
当你想要更新a(Alice, Bob)a(Alice,Bob)的值时,其计算过程如下:a(Doug, Bob) = min\{{0,(-15)+0+0+0}\}=-15a(Doug,Bob)=min{0,(−15)+0+0+0}=−15最后得到的结果如下表所示:
Criterion Matrix ©
在得到上面的availability matrix后,将availability matrix和responsibility matrix的对应元素相加,便可得到criterion matrix。
其计算公式如下:c(i, k) \leftarrow r(i,k)+a(i,k).c(i,k)←r(i,k)+a(i,k).最后得到的criterion matrix的结果如下:
以上便是Affinity Propogation算法的计算过程,这是我见过最浅显易懂的讲解了,详见原文。
代码示例如下:
首先,导入相关库:
import numpy as np from matplotlib import pyplot as plt import seaborn as sns sns.set() from sklearn.datasets.samples_generator import make_blobs from sklearn.cluster import AffinityPropagation
使用scikit-learn生成需要的数据集,详见如下:
X, clusters = make_blobs(n_samples=300, centers=4, cluster_std=0.60, random_state=0) plt.scatter(X[:,0], X[:,1], alpha=0.7, edgecolors='b')
训练模型(因为是无监督算法,因此不需要拆分训练集和测试集):
af = AffinityPropagation(preference=-50) clustering = af.fit(X)
最后,将不同聚类的点可视化:
plt.scatter(X[:,0], X[:,1], c=clustering.labels_, cmap='rainbow', alpha=0.7, edgecolors='b')
算法使用场景:
Affinity Propagation是一个无监督的机器学习算法,它尤其适用于那些不知道最佳聚类数情况的算法。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27