京公网安备 11010802034615号
经营许可证编号:京B2-20210330
理论物理学家和研究科学家Mehmet Suzen曾表示,二分类任务是机器学习的基础。但是,其性能的标准统计信息是一种数学工具,ROC-AUC很难解释。在这里,引入了一种性能度量,该度量仅考虑进行正确的二进制分类的可能性。
机器学习模型的核心应用是二分类任务。从用于诊断测试的医学领域到为消费者提供信用风险决策的领域,有很多领域。建立分类器的技术多种多样,从简单的决策树到逻辑回归,再到最近利用多层神经网络的超酷深度学习模型。但是,它们在构造和训练方法上在数学上有所不同,就其评估而言,事情变得棘手。在本文中,我们为实践中的二元分类器提出了一种简单且可解释的性能指标。
为什么ROC-AUC无法解释?
因为不同的阈值会产生不同的混淆矩阵。
报告分类器性能的实际标准是使用接收机工作特性(ROC)-曲线下面积(AUC)''度量。它起源于1940年代美国海军研发雷达时,用于测量探测性能。 ROC-AUC的含义至少有5种不同的定义,即使您拥有博士学位也是如此。在机器学习中,人们很难解释AUC作为绩效指标的含义。由于AUC功能几乎在所有图书馆中都可用,并且它几乎像一种宗教仪式一样,在机器学习论文中作为分类表现进行报告。但是,除了荒谬的比较问题之外,其解释并不容易,请参阅hmeasure。 AUC会根据从不同阈值的混淆矩阵中提取的假正率(FPR)来衡量真正率(TPR)曲线下的面积。
f(x)= y
∫10 f(x)dx = AUC
其中,y是TPR,x是FPR。除了多种解释且容易混淆之外,将积分放在FPR之上没有明确的目的。显然,我们希望通过将FPR设置为零来实现完美的分类,但是该区域在数学上并不清晰,这意味着它作为一个数学对象是不清楚的。
正确分类的概率(PCC)
对于二分类问题的分类器而言,一种简单且可解释的性能指标对于技术含量高的数据科学家和非技术利益相关者都非常有用。这个方向的基本租户是,分类器技术的目的是区分两个类别的能力。这归结为一个概率值,正确分类的概率(PCC)。一个明显的选择是所谓的平衡精度(BA)。通常建议将其用于不平衡问题,即使是SAS也是如此;尽管他们使用了概率相乘。由于统计上的依赖性,在这里我们将BA称为PCC并使用加法代替:
PCC =(TPR + TNR)/ 2
TPR = TP /(条件正例)= TP /(TP + FN)
TNR = TN /(条件负例)= TN /(TN + FP)。
PCC告诉我们分类器在检测任何一个分类中有多好,它是一个概率值[0,1]。请注意,即使我们的数据在生产中是均衡的,在肯定和否定情况下使用总精度也会产生误导,即使我们衡量绩效的批次可能不均衡,所以仅凭准确性并不是一个好方法。
生产问题
迫在眉睫的问题是如何在生成混淆矩阵时选择阈值?一种选择是选择一个阈值,以使PCC在测试集上的生产最大化。为了改善PCC的估计,可以对测试集进行重采样以获得良好的不确定性。
结论
我们尝试通过引入PCC或平衡精度作为二进制分类器的一种简单且可解释的性能指标来规避报告AUC。这很容易向非技术人员解释。可以引入一种改进的PCC,它考虑到更好的估计属性,但是主要解释仍然与正确分类的可能性相同。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22