京公网安备 11010802034615号
经营许可证编号:京B2-20210330
相信接触过Excel的小伙伴都知道,Excel有一个非常强大的功能“数据透视表”,使用数据透视表可以自由选择不同字段,用不同的聚合函数进行汇总,并建立交叉表格,用以从不同层面观察数据。这么强大的功能,在Python中怎么去实现呢?
不用担心,Python的"数据分析小能手"Pandas很贴心地为我们提供了一个快速实现数据透视表功能的方法——pivot_table()。事不宜迟,让我们赶紧看看如何在Python中实现数据透视表!
为帮助大家更好地理解,在讲解如何使用pivot_table( )实现透视表前,我们先导入示例数据,在接下来的讲解中都使用此数据作为例子。
# 导入示例数据
<<< data =pd.read_csv("data.csv")
<<< data.head()
月份 项目 部门 金额 剩余金额
0 1月 水费 市场部 1962.37 8210.58
1 2月 水费 市场部 690.69 9510.60
2 2月 电费 市场部 2310.12 5384.92
3 2月 电费 运营部 -1962.37 7973.10
4 2月 电费 开发部 1322.33 6572.16
下面我将带大家使用pivot_table( )一步一步实现数据透视表的操作。
首先,原数据有5个字段,我们在做数据透视表之前必须理解每个字段的意思,明确清楚自己需要得到什么信息。
假设我们想看看不同月份所花费的水电费金额是多少,这时我们需要把字段“月份”设置为索引,将字段“金额”设置为我们需要看的值,具体代码如下:
<<< data.pivot_table(index=['月份'],values=['金额']) 金额 月份 10月 3723.940000 11月 2900.151667 12月 10768.262857 1月 1962.370000 2月 1432.280000 3月 3212.106667 4月 4019.175000 5月 4051.480000 6月 6682.632500 7月 11336.463333 8月 17523.485000 9月 10431.960000
参数index为设置的索引列表,即分组依据,需要用中括号[ ]将索引字段括起来;参数values为分组后进行计算的字段列表,也需要用中括号[ ]括起来。这两个参数的值可以是一个或多个字段,即按照多个字段进行分组和对多个字段进行计算汇总。例如,设置index=['项目','部门']代表求不同项目不同部门下的金额。
<<< data.pivot_table(index=['项目','部门'],values=['金额'])
金额
项目 部门
水费 市场部 3614.318125
开发部 2358.205000
运营部 5896.213333
电费 市场部 6094.748235
开发部 1322.330000
运营部 7288.615000
采暖费 市场部 5068.380000
运营部 55978.000000
若设置values=['金额','剩余金额'],即求不同项目不同部门下金额和剩余金额的值。
<<< data.pivot_table(index=['项目','部门'],values=['金额','剩余金额'])
剩余金额 金额
项目 部门
水费 市场部 7478.423125 3614.318125
开发部 6866.490000 2358.205000
运营部 7224.033333 5896.213333
电费 市场部 7645.535882 6094.748235
开发部 6572.160000 1322.330000
运营部 8821.895000 7288.615000
采暖费 市场部 6572.030000 5068.380000
运营部 7908.560000 55978.000000
同时,如果我们想以交叉表的形式查看不同项目和不同部门下的消费金额,这时就要将字段‘部门’设置为列名,进行交叉查看,具体代码如下:
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额'])
金额
部门 市场部 开发部 运营部
项目
水费 3614.318125 2358.205 5896.213333
电费 6094.748235 1322.330 7288.615000
采暖费 5068.380000 NaN 55978.000000
通过上面的示例,我们可以看到某个分组下不存在记录会被标记为NAN,例如上述中采暖部和开发部不存在金额这一字段的记录,则会标记为NAN。如果不希望被标记为NAN,我们可以通过设置参数fill_value=0来用数值0替代这部分的缺失值。
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额'],fill_value=0)
金额
部门 市场部 开发部 运营部
项目
水费 3614.318125 2358.205 5896.213333
电费 6094.748235 1322.330 7288.615000
采暖费 5068.380000 0.000 55978.000000
在上面的示例中,我们都是默认分组后对值进行求平均值计算,假如我们想查看不同项目不同部门下金额的总和该怎么实现呢?
通过设置参数aggfunc=np.sum即可对分组后的值进行求和操作,参数aggfunc代表分组后值的汇总方式,可传入numpy库中的聚合方法。
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额'],fill_value=0,aggfunc=np.sum) 金额 部门 市场部 开发部 运营部 项目 水费 57829.09 4716.41 17688.64 电费 103610.72 1322.33 29154.46 采暖费 5068.38 0.00 55978.00
除了常见的求和、求平均值这两种聚合方法,我们还可能接触到以下这几种:
描述方法标准差np.std()方差np.var()所有元素相乘np.prod()中数np.median()幂运算np.power()开方np.sqrt()最小值np.min()最大值np.max()以e为底的指数np.exp(10)对数np.log(10)
与前面介绍的参数index,columns,value一样,参数aggfunc传入的值也是一个列表,表示可传入一个或多个值。当传入多个值时,表示对该值进行多种汇总方式,例如同时求不同项目不同部门下金额的求和值和平均值:
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额'],fill_value=0,aggfunc=[np.sum,np.max]) sum amax 金额 金额 部门 市场部 开发部 运营部 市场部 开发部 运营部 项目 水费 57829.09 4716.41 17688.64 16807.58 2941.28 6273.56 电费 103610.72 1322.33 29154.46 18239.39 1322.33 26266.60 采暖费 5068.38 0.00 55978.00 5068.38 0.00 55978.00
同时,如果我们想对不同字段进行不同的汇总方式,可通过对参数aggfunc传入字典来实现,例如我们可以同时对不同项目不同部门下,对字段金额求总和值,对字段剩余金额求平均值:
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额','剩余金额'],fill_value=0,aggfunc={'金额':np.sum,'剩余金额':np.max})
剩余金额 金额
部门 市场部 开发部 运营部 市场部 开发部 运营部
项目
水费 9510.60 8719.34 7810.38 57829.09 4716.41 17688.64
电费 9625.27 6572.16 9938.82 103610.72 1322.33 29154.46
采暖费 6572.03 0.00 7908.56 5068.38 0.00 55978.00
另外,在进行以上功能的同时,pivot_table还为我们提供了一个求所有行及所有列对应合计值的参数margins,当设置参数margins=True时,会在输出结果的最后添加一行'All',表示根据columns进行分组后每一项的列总计值;以及在输出结果的最后添加一列'All',表示根据index进行分组后每一项的行总计值。
<<< pd.set_option('precision',0)
<<< data.pivot_table(index=['项目'],columns=['部门'],values=['金额','剩余金额'],fill_value=0,aggfunc={'金额':np.sum,'剩余金额':np.max},margins=True)
剩余金额 金额
部门 市场部 开发部 运营部 All 市场部 开发部 运营部 All
项目
水费 9511 8719 7810 9511 57829 4716 17689 80234
电费 9625 6572 9939 9939 103611 1322 29154 134088
采暖费 6572 0 7909 7909 5068 0 55978 61046
All 9625 8719 9939 9939 166508 6039 102821 275368
上面详细介绍了如何在python中通过pivot_table( )方法实现数据透视表的功能,那么,与数据透视表原理相同,显示方式不同的‘数据透视图’又该怎么实现呢?
实现方法非常简单,将上述进行pivot_table操作后的对象进行实例化,再对实例化后的对象进行plot绘图操作即可,具体代码如下:
<<< df=data.pivot_table(index=['项目'],columns=['部门'],values='金额',fill_value=0) <<< df.plot(kind='bar')
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26在数字化浪潮下,数据分析已成为企业决策的核心支撑,而CDA数据分析师作为标准化、专业化的数据人才代表,正逐步成为连接数据资 ...
2026-01-26数据分析的核心价值在于用数据驱动决策,而指标作为数据的“载体”,其选取的合理性直接决定分析结果的有效性。选对指标能精准定 ...
2026-01-23在MySQL查询编写中,我们习惯按“SELECT → FROM → WHERE → ORDER BY”的语法顺序组织语句,直觉上认为代码顺序即执行顺序。但 ...
2026-01-23数字化转型已从企业“可选项”升级为“必答题”,其核心本质是通过数据驱动业务重构、流程优化与模式创新,实现从传统运营向智能 ...
2026-01-23CDA持证人已遍布在世界范围各行各业,包括世界500强企业、顶尖科技独角兽、大型金融机构、国企事业单位、国家行政机关等等,“CDA数据分析师”人才队伍遵守着CDA职业道德准则,发挥着专业技能,已成为支撑科技发展的核心力量。 ...
2026-01-22在数字化时代,企业积累的海量数据如同散落的珍珠,而数据模型就是串联这些珍珠的线——它并非简单的数据集合,而是对现实业务场 ...
2026-01-22在数字化运营场景中,用户每一次点击、浏览、交互都构成了行为轨迹,这些轨迹交织成海量的用户行为路径。但并非所有路径都具备业 ...
2026-01-22在数字化时代,企业数据资产的价值持续攀升,数据安全已从“合规底线”升级为“生存红线”。企业数据安全管理方法论以“战略引领 ...
2026-01-22在SQL数据分析与业务查询中,日期数据是高频处理对象——订单创建时间、用户注册日期、数据统计周期等场景,都需对日期进行格式 ...
2026-01-21