
无论它的规模和大小如何,数据已经成为现代企业、公司和组织的一流资产。任何一个智能系统都需要数据驱动,无论它多复杂。每个智能系统的核心,均有一个或多个基于某种数据学习方法的算法,例如机器学习、深度学习或统计方法,它们利用这些数据来生成知识,并在一段时间内提供智能洞察。
算法本身是非常通用的,但无法在普通原始数据上有效发挥作用。因此,需要从原始数据中提取有意义的特征,我们才能够理解和使用这些数据。
任何一个智能数据洞察系统基本上都由端到端的管道组成:
如果有必要的话,还需要根据手头要解决的问题部署该模型以供将来使用。
获取原始数据后,直接在数据之上构建模型是鲁莽的,因为我们无法从普通原始数据中获得想要的结果或性能,而且算法本身也不会自动从中提取有意义的特征。在上图中指出的数据准备方面,在对原始数据进行必要的清洗、预处理分析之后,便可以采用多种方法从中提取有意义的属性或特征。特征工程是一门艺术,也是一门科学,这也是为什么数据科学家在建模之前通常会把70%的时间花在数据准备上。
“特征工程是将原始数据转化为特征的过程,这些特征可以更好地向预测模型描述潜在问题,从而提高模型对未见数据的准确性。”
-Jason Brownlee博士
这让我们深入了解了为什么特征工程是一个将数据转化成作为机器学习模型输入的特征的过程,换句话说,高质量的特征有助于提高模型整体的性能和准确性。特征在很大程度上与基本问题相关联。
因此,即使机器学习任务在不同的场景中可能是相同的,比如将物联网事件分类为正常和异常行为,或者将客户情绪分类,但每个场景中提取的特征都会有很大的不同。
什么是特征?
特征通常是建立在原始数据之上的特定表示,它是一个单独的可测量属性,通常用数据集中的列表示。对于一个通用的二维数据集,每个观测值由一行表示,每个特征由一列表示,对于每一个观测具有一个特定的值。
因此,就像上图中的例子一样,每行通常表示一个特征向量,所有观察到的全部特征集形成一个二维特征矩阵,也称为特征集。这类似于用来表示二维数据的数据框或电子表格。机器学习算法通常与这些数值矩阵或张量一起工作,因此绝大多数特征工程技术都是将原始数据转换为一些数值表达,以便算法理解。
基于数据集的特征可以分为两大类:
举一个简单的例子:通过将当前日期减去订单日期,可以从包含“订单日期”的订单数据集中创建一个新的“订单履行日期”。另一方面,在特定的深度学习算法中,特征通常比较简单,因为算法本身会内部转化数据。这种方法需要的数据量会比较大,并以牺牲解释性为代价。然而,在图像处理或自然语言处理用例中,这样的折中方法往往是值得的。
对于公司面临的大多数其他用例,例如预测分析,特征工程是将数据转换成机器学习所需要的格式。特征的选择对模型的解释性和性能都至关重要。如果没有特征工程,今天的大公司就无法部署精确的机器学习系统。
特征工程
数值数据通常以标量值的形式描述观测、记录或测量数据。在这里,我们所说的数值数据是指连续数据,而不是通常用来表示分类数据的离散数据。数值数据也可以是向量值,其中向量中的每个值或实体都可以表示一个特定的特征。整数和浮点数是连续数值数据中最常见和最广泛使用的数值数据类型。
即使数值数据可以直接输入机器学习模型,在构建模型之前,仍然需要设计与场景、问题和领域相关的特征。因此,对特性工程的需求仍然存在。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
用 Power BI 制作地图热力图:基于经纬度数据的实践指南 在数据可视化领域,地图热力图凭借直观呈现地理数据分布密度的优势,成 ...
2025-07-24解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-24CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-24从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-23用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-23鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-23解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-22解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-22CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-22左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-22你是不是也经常刷到别人涨粉百万、带货千万,心里痒痒的,想着“我也试试”,结果三个月过去,粉丝不到1000,播放量惨不忍睹? ...
2025-07-21我是陈辉,一个创业十多年的企业主,前半段人生和“文字”紧紧绑在一起。从广告公司文案到品牌策划,再到自己开策划机构,我靠 ...
2025-07-21CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-21MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-21在AI渗透率超85%的2025年,企业生存之战就是数据之战,CDA认证已成为决定企业存续的生死线!据麦肯锡全球研究院数据显示,AI驱 ...
2025-07-2035岁焦虑像一把高悬的利刃,裁员潮、晋升无望、技能过时……当职场中年危机与数字化浪潮正面交锋,你是否发现: 简历投了10 ...
2025-07-20CDA 数据分析师报考条件详解与准备指南 在数据驱动决策的时代浪潮下,CDA 数据分析师认证愈发受到瞩目,成为众多有志投身数 ...
2025-07-18刚入职场或是在职场正面临岗位替代、技能更新、人机协作等焦虑的打工人,想要找到一条破解职场焦虑和升职瓶颈的系统化学习提升 ...
2025-07-182025被称为“AI元年”,而AI,与数据密不可分。网易公司创始人丁磊在《AI思维:从数据中创造价值的炼金术 ...
2025-07-18CDA 数据分析师:数据时代的价值挖掘者 在大数据席卷全球的今天,数据已成为企业核心竞争力的重要组成部分。从海量数据中提取有 ...
2025-07-18