京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Jansfer
来源 | AMiner
Artificial intelligence trends of 2019
2019年给我们带来了一些我们不可以错过的最新人工智能趋势。
人工智能已经风靡全球。它被看作是技术给人类的礼物。现在创造的应用程序、机器等任何事物没有一个是不和人工智能挂钩的。每年我们都会关注人工智能趋势的变化,为下一年树立一个基准。如今,企业致力于将人工智能融入到各种技术形式,并且在健康、农业、建筑和汽车等领域取得了突破性的应用。
人工智能,简称AI,是人类智能在机器中的再创造。科学家们想要通过人工智能,教机器像人类那样思考和决策。在人工智能的帮助下,许多公司尽力提高用户体验,他们几乎把人工智能融入了他们提供的每一个解决方案中。苹果、Facebook、谷歌、微软、IBM和亚马逊都是在研究人工智能方面投入巨资的顶尖公司。
就像它问世后每隔一年一样,2019年也给我们带来了一些我们不可以错过的最新人工智能趋势。下面一起来看一下,2019年最大的人工智能趋势:
01
机器学习也被称为“深度学习”,是一种人工智能应用程序。它允许计算机系统通过从经验中获取知识,然后用同样的方法来处理复杂的计算和功能,从而自动改进其功能。机器不再需要为每个功能单独编程。机器通过数据访问来收集信息并相应地增强学习能力,这使得深度学习成为可能。公司正选择对它们的计算机系统进行深度学习,以提高其性能、结果的准确性,并识别潜在的有害风险。
由于这种人工智能趋势使机器能够迅速做出决定,公司使用机器学习最多的领域包括自动文本生成、计算机视觉和自动驾驶车辆。
02
面部识别
这与我们曾经在电影中所看到的类似,也就是说,面部识别通过是一个人进入限制区域的先决条件。今年这一趋势终于加快了步伐。事实上,面部识别被认为是人工智能行业最大的突破之一,专家们认为这一趋势会继续发展下去,并且这项技术会随着时间的推移变得更好。
人脸识别是通过数字模式来识别人类图像的。我们可以看到很多我们最喜欢的智能手机都加入了这一特殊功能,以此来增强手机的安全性。如果你对这种趋势的运作方式感到困惑,让我们给你举个例子来帮助你更好地理解。比如说,每次你在Facebook上传一张照片时,它会立即识别出你朋友的脸,并询问你是否愿意在照片上标记他们。以前我们不得不花时间在列表中查找朋友从而在图库中标记他们,但这样的日子已经一去不复返了。因为现在,面部识别为你做到了。另一个最适合面部识别功能的例子是iPhone X手机的数字密码功能。它所需要的只是你的脸,你可以瞬间打开你的手机!医疗和保健行业也在努力将面部识别纳入各自的领域。在这项技术的帮助下,科学家们正在制定诊断方法,这样就不必让病人经历耗时的过程。
03
升级的隐私策略
由于一切似乎都在朝着人工智能集成的方向努力,网站和应用程序正在升级其隐私政策,以便让用户了解不断涌入的最新变化。例如,在包含人工智能集成应用程序之后,Facebook一直在努力确保用户的信息完全安全,同时保持透明度,并升级了他们的隐私政策。
04
人工智能芯片
今年另一个流行趋势是支持人工智能的计算机芯片。一个普通的CPU不支持人工智能模块,因此人工智能芯片被单独集成到CPU中,使它们像人工智能机器一样工作。这些支持人工智能的芯片可以进行极其复杂的数学计算,从而集成上述人工智能趋势,如面部识别和机器学习。
为了将这些人工智能芯片带给消费者,英特尔、英伟达、高通、ARM和AMD等顶级硬件制造商正致力于将它们尽快添加到计算机系统中,以便他们能够在不受任何阻碍的情况下进行典型的人工智能计算。所有这些人工智能芯片都将集成语音识别和面部识别功能。汽车行业和医疗保健行业将非常依赖这些支持人工智能的芯片,因此它们的机器可以为用户提供最好的人工智能体验。
05
在过去的几年里,云计算得到了极大的发展,并且随着人工智能的集成,云计算已经上升到了一个非常重要的水平。目前,云计算的最高领导者包括阿里巴巴、谷歌、亚马逊网络服务、Oracle和微软Azure。专家们认为,随着这些最高领导者在全球范围内的不断扩张,它们今年将会发挥更具影响力的作用。此外,专家们还预计,今年云计算的整个业务收入将高达2000亿美元,比业界此前的业绩高出20%。
06
总结
尽管人工智能的形象是一个对手,但它仍然是一个游戏规则的改变者,它将继续为许多不同行业的研发做出贡献。许多专家认为,未来人工智能将成为我们生活中不可或缺的一部分,如果没有人工智能,我们的生存似乎是不可能的。人脸识别、机器学习等仅仅标志着在人工智能帮助下可以实现的奇迹的开端。因为人工智能与计算机的集成,我们曾经在电影中看到的所有让我们惊叹的事情,现在都可以在现实中实现。期待接下来人工智能为我们带来的奇迹!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01在时间序列预测任务中,LSTM(长短期记忆网络)凭借对时序依赖关系的捕捉能力成为主流模型。但很多开发者在实操中会遇到困惑:用 ...
2025-12-01引言:数据时代的“透视镜”与“掘金者” 在数字经济浪潮下,数据已成为企业决策的核心资产,而CDA数据分析师正是挖掘数据价值的 ...
2025-12-01数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27