
作者 | CDA数据分析师
来源 | CDA数据科学研究院
筛选是从结果集中删除某些值或值范围的过程。
视图中创建
在视图中选中要筛选的项,在浮动工具栏或右键选择“只保留”或“排除”即可。
筛选栏创建
将要筛选的字段拖放至筛选栏,在弹出的筛选器对话框中选择筛选方式。
显示筛选器
在数据窗口选中要筛选的字段,右键选择“显示筛选器”,该字段将作为筛选器并显示在工作表中。
按照筛选字段的数据类型,可以分为维度筛选、度量筛选、日期筛选。
维度筛选
维度筛选是应用于维度字段的筛选器。 - 将“地区”、“销售额”和“市场”分别拖放至行列功能区和筛选栏,在筛选器中保留“亚太地区”。
- 将“利润”拖放至颜色和标签。
度量筛选
度量筛选是应用于度量字段的筛选器。 - 将“地区”、“销售额”和“利润”分别拖放至行列功能区和筛选器,在筛选器中设置利润至多为0。
- 将“利润”拖放至标签。
日期筛选
日期筛选是应用于日期字段的筛选器。 - 将“销售额”和“订购日期”拖放至行列功能区,“订购日期”拖放至筛选器选择日期范围。
按照筛选方法,可以分为上下文筛选、条件筛选、顶部筛选和通配符筛选。
上下文筛选
上下文筛选:用于处理通过上下文筛选的数据。 Tableau中的正常筛选器彼此独立,每个筛选器从源数据读取所有行,并创建自已的结果。但是在某些情况下,我们希望第二个筛选器只处理第一个筛选器返回的记录,这种情况下,第二个筛选器称为依赖筛选器,因为它们只处理通过上下文筛选器的数据。 - 将“地区”、“销售额”和“市场”分别拖放至行列功能区和筛选栏,在筛选器中保留“亚太地区”。
- 将“利润”拖放至筛选栏,在筛选器中设置利润至多为0。
条件筛选
条件筛选:对已存在的筛选器应用一些条件。 Tableau中使用条件筛选器对已存在的筛选器应用一些条件筛选,这些条件可以通过字段设置,也可以编辑公式设置。 - 将“地区”和“销售额”分别拖放至行列功能区,“地区”拖放至筛选栏,常规中勾选全部成员,条件中按公式筛选利润小于0且销售额大于100000的地区。
- 将“利润”拖放至标签。
顶部筛选
顶部筛选:用于限制筛选器的结果集。 Tableau中的顶部筛选器对已存在的筛选器限制筛选的结果集,这些条件可以通过字段设置,也可以编辑公式设置。 - 将“国家/地区”和“销售额”分别拖放至行列功能区,“国家/地区”拖放至筛选栏,在筛选器中勾选全部成员,在顶部按字段筛选销售额前10的国家。
- 按销售额降序显示。
通配符筛选
通配符筛选:用于字符串型字段的筛选。 Tableau中的通配符筛选器对已存在的筛选器进行字符匹配筛选,主要包括:包含、开头为、结尾为、精通匹配。 - 将“客户名称”和“消费金额”分别拖放至行列功能区,“客户名称”拖放至筛选栏,在筛选器中勾选全部成员,在通配符中筛选开头为“Aaron”的客户名称。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29