京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | CDA数据分析师
来源 | CDA数据科学研究院
筛选是从结果集中删除某些值或值范围的过程。
视图中创建
在视图中选中要筛选的项,在浮动工具栏或右键选择“只保留”或“排除”即可。
筛选栏创建
将要筛选的字段拖放至筛选栏,在弹出的筛选器对话框中选择筛选方式。
显示筛选器
在数据窗口选中要筛选的字段,右键选择“显示筛选器”,该字段将作为筛选器并显示在工作表中。
按照筛选字段的数据类型,可以分为维度筛选、度量筛选、日期筛选。
维度筛选
维度筛选是应用于维度字段的筛选器。 - 将“地区”、“销售额”和“市场”分别拖放至行列功能区和筛选栏,在筛选器中保留“亚太地区”。
- 将“利润”拖放至颜色和标签。
度量筛选
度量筛选是应用于度量字段的筛选器。 - 将“地区”、“销售额”和“利润”分别拖放至行列功能区和筛选器,在筛选器中设置利润至多为0。
- 将“利润”拖放至标签。
日期筛选
日期筛选是应用于日期字段的筛选器。 - 将“销售额”和“订购日期”拖放至行列功能区,“订购日期”拖放至筛选器选择日期范围。
按照筛选方法,可以分为上下文筛选、条件筛选、顶部筛选和通配符筛选。
上下文筛选
上下文筛选:用于处理通过上下文筛选的数据。 Tableau中的正常筛选器彼此独立,每个筛选器从源数据读取所有行,并创建自已的结果。但是在某些情况下,我们希望第二个筛选器只处理第一个筛选器返回的记录,这种情况下,第二个筛选器称为依赖筛选器,因为它们只处理通过上下文筛选器的数据。 - 将“地区”、“销售额”和“市场”分别拖放至行列功能区和筛选栏,在筛选器中保留“亚太地区”。
- 将“利润”拖放至筛选栏,在筛选器中设置利润至多为0。
条件筛选
条件筛选:对已存在的筛选器应用一些条件。 Tableau中使用条件筛选器对已存在的筛选器应用一些条件筛选,这些条件可以通过字段设置,也可以编辑公式设置。 - 将“地区”和“销售额”分别拖放至行列功能区,“地区”拖放至筛选栏,常规中勾选全部成员,条件中按公式筛选利润小于0且销售额大于100000的地区。
- 将“利润”拖放至标签。
顶部筛选
顶部筛选:用于限制筛选器的结果集。 Tableau中的顶部筛选器对已存在的筛选器限制筛选的结果集,这些条件可以通过字段设置,也可以编辑公式设置。 - 将“国家/地区”和“销售额”分别拖放至行列功能区,“国家/地区”拖放至筛选栏,在筛选器中勾选全部成员,在顶部按字段筛选销售额前10的国家。
- 按销售额降序显示。
通配符筛选
通配符筛选:用于字符串型字段的筛选。 Tableau中的通配符筛选器对已存在的筛选器进行字符匹配筛选,主要包括:包含、开头为、结尾为、精通匹配。 - 将“客户名称”和“消费金额”分别拖放至行列功能区,“客户名称”拖放至筛选栏,在筛选器中勾选全部成员,在通配符中筛选开头为“Aaron”的客户名称。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15