京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | CDA数据分析师
来源 | CDA数据科学研究院
如果您有着下面这些疑问:
那么,您可以通过学习本系列教程帮助您快速了解powerBI工具的使用,让您乘上数据分析之路的直通车。
本系列教程旨在帮助您了解和理解Excel中Power BI各插件的功能和应用,包括Power Query、Power Pivot、Power View、Power Map。我将分模块对其进行介绍,下面我们就先来简单了解一下Power BI这门数据分析工具吧。
Power BI简介
1. 什么是Power BI?
以下是Microsoft Power BI官网给的定义:
Power BI是一种业务分析解决方案,可让您可视化数据并在整个组织中共享洞察,或将其嵌入到您的应用或网站中。连接数百个数据源,通过实时仪表板和报告将数据变为现实。
简单来说,Power BI就是一个数据分析工具,它能实现数据分析的所有流程,包括对数据的获取、清洗、建模和可视化展示,从而来帮助个人或企业来对数据进行分析,用数据驱动业务,做出正确的决策。说到这,我们有必要先来了解和理解一下数据分析的整个流程。
首先,我们先来看一下数据分析的一般流程是怎样的?
在数据分析过程中,有3个“最”我们需要铭记于心:
通常,我们可以将数据分析比喻成做菜,做菜的过程其实就类似数据分析的过程:
2. 为什么要使用Power BI?
如果您还不清楚为什么要学习Power BI,下面这些回答相信可以解决您的困扰。
十多年的行业领导地位 Gartner连续12年将微软评为分析和商业智能平台的魔力象限领导者。下面展示的是2019年最新的评价:
3. Power BI包括哪些组件?
从Excel 2016版开始,就嵌入了Power BI系列的插件,其中包括:Power Query、Power Pivot、Power View、Power Map。
因此,在学习本系列课程前,您需要准备:
如果您已经拥有Excel 2016及以上版本,那么下面教程将教您在Excel中如何加载Power BI插件。
一、常见环境配置问题:
二、加载Power BI插件
第1步:打开文件选项卡:
第2步:单击“选项”:
第3步:打开COM加载项:
第4步:勾选Power BI插件:
三、检查Power BI插件是否可以使用
1. Power Query检查
数据选项卡—>从表格—>进入PQ界面
在“转换选项卡”下查看是否有“提取”命令,如果有,说明Power Query可正常使用!
如果没有“提取”命令,选择文件-账户-更新下Excel
2. Power Pivot检查
查看功能区中是否有“Power Pivot”选项卡,如果有,说明配置成功!
3. Power Map检查
在插入选项卡下打开三维地图,注意需要连接网络,如果打不开可以尝试先将IE浏览器打开后再启动三维地图:
4. Power View检查
首先,先添加Power View命令
Power View选项卡中打开Power View
如果打开不成功,需要添加"EnableControls"文件夹里面的注册表和安装"Silverlight"
最后,2016家庭学生版重装失败的,可以选择使用Power BI Desktop进行替代使用Power View的功能。
下面我们来学习Power Query获取数据
下面我们开始来学习Power BI的第一个模块:Power Query模块。
在本小节,您将会学习怎样使用Power Query来获取数据,包括:
1. 获取本地数据
下面我们以获取Excel文件中的数据为例:
首先,我们先新建一个Excel文件,然后在数据选项卡下依次打开:新建查询——>从文件——>从工作簿
打开之后,找到您想要导入的Excel工作簿并导入即可
单击选择要导入的表后进行加载
双击或右键选择编辑即可进入Power Query编辑界面
2. 获取网页数据
下面我们以获取某篮球队的队员信息为例:
首先,在其官网选择您喜欢的一支球队
打开球员信息页面
打开一个新的Excel表格,在数据选项卡中依次打开:新建查询——>从其他源——>自网站
将复制的网址输入,点击确定
勾选“选择多项”,然后选择Table0表和Table2表进行加载,数据获取成功
注:若想查找已导入的数据,数据选项卡下“显示查询”可显示当前Excel下已导入的表
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26