
作者 | 顾家彤、鲍歆祎
来源 | 读芯术
如果要列举一项彻底改变了21世纪的技术,非人工智能莫属。现如今,人工智能已然成为我们日常生活的一部分,不断丰富和便捷着社会的方方面面,今天这篇文章,将帮助读者好好了解人工智能的基本常识和基本概念,参透人工智能的前世今生。
人工智能的概念
1956年,约翰·麦卡锡(John McCarthy),计算科学与认知科学专家,美国斯坦福大学教授)如此定义“人工智能”一词——创造智能机器的科学和工程。
人工智能还可以被定义为计算机系统开发。此类计算机系统能够执行需要人类智能的任务,例如决策,对象检测,解决复杂问题等。
人工智能的发展阶段
很多文章都把人工智能分为通用人工智能(AGI)、专用人工智能(ANI)和人工超级智能(ASI)三种不同类型的人工智能。更确切地说,人工智能有三个阶段。
专用人工智能(ANI)
专用人工智能(ANI)也称为弱人工智能,是人工智能的一个发展阶段,涉及的机器只能执行一组狭义的特定任务。在这个阶段,机器不具备任何思考能力。它只是执行一组预设的功能。
弱人工智能的例子包括Siri(智能语音助手),Alexa(搜索引擎),自动驾驶汽车,Alpha-Go(人工智能机器人),Sophia(类人机器人)等。到目前为止,几乎所有基于人工智能的系统都属于弱人工智能类别。
通用人工智能(AGI)
通用人工智能(AGI)是人工智能的发展阶段,也被称为强人工智能。在这一阶段,机器将具有像我们人类一样思考和决策的能力。
目前还没有强人工智能的例子,但是,我们相信很快就能够创造出像人类一样聪明的机器。
很多科学家,包括斯蒂芬·霍金,觉得强人工智能会威胁人类的存在。霍金认为:“人工智能的完全发展可能意味着人类的终结......它将自行腾飞,并以不断增长的速度重新进行自我设计。人类受限于缓慢的生物进化过程,无法参与竞争,最终将被完全的人工智能取代。”
超级人工智能(ASI)
超级人工智能是人工智能超越人类的发展阶段。人工超级智能目前只是一个假设,就像电影和科幻小说描述的那样——机器统治世界。
考虑到目前的发展速度,机器离达到人工超级智能阶段并不遥远了。
人工智能(这里指的不是专用人工智能)的进步速度非常快。除非直接接触像Deepmind这样的团队,否则根本不知道它有多快 - 它以接近指数的速度增长。最多十年,最少可在五年内,人工智能就有发生严重危险事件的风险。埃隆·马斯克
人工智能的类型
当要求解释不同类型的人工智能系统时,必须根据其功能对人工智能进行分类。
基于人工智能系统的功能,人工智能可以分为以下类型:
反应性人工智能
这种类型的人工智能包括仅基于当前数据和情况运行的机器。反应性人工智能机器不能推断数据,评估人工智能未来的行为。他们可以执行范围缩小的预设任务。
IBM的象棋程序打败了世界冠军加里·卡斯帕罗夫。这就是一个反应性机器人的例子。
有限内存人工智能
顾名思义,有限内存人工智能可以通过研究其内存中的历史数据来做出明智的和改进的决策。这样的人工智能具有短暂或临时的记忆,可用于存储历史经验并评估未来的行为。
自动驾驶汽车是有限内存人工智能,它使用最近收集的数据做出即时决定。例如,自动驾驶汽车使用传感器识别横穿道路的平民,陡峭的道路,交通信号等,以做出更好的驾驶决定。这有助于阻止任何未来可能发生的事故。
心智理论人工智能
心智理论人工智能是一种更先进的人工智能。据推测,这类机器在心理学中起着重要作用。心智理论人工智能将主要关注情商,以便更好地理解人类的信念和思想。
心智理论人工智能尚未成熟,但人类在严谨地研究这一领域。
自我意识人工智能
让我们祈祷人工智能没有达到有自己的想法和自我意识的阶段。鉴于目前的情况,自我意识人工智能有些遥不可及。但是,将来自我意识人工智能可能会达到超级智能化阶段。
像埃隆·马斯克(Elon Musk)和斯蒂芬·霍金(StephenHawkings)这样的天才一直提醒人们警惕人工智能的进化。
人工智能的分支
人工智能通过执行以下程序/运用技巧,可以解决现实问题。
机器学习是一门让机器通过翻译,处理和分析数据解决现实问题的科学。
在机器学习下面,有如下三个分类:
1. 监督学习
2. 无监督学习
3. 强化学习
深度学习是在高维数据上实现神经网络以获得洞察力和形成解决方案的过程。深度学习是机器学习的高级领域,可用于解决更高级的问题。
深度学习是Facebook面部识别算法,自动驾驶汽车,Siri,Alexa等虚拟助手背后的逻辑。
自然语言处理
自然语言处理(NLP)是指从人类自然语言中获取见解,与机器交流,拓展业务的科学。
Twitter使用自然语言处理技术在其推文中过滤掉带有恐怖主义色彩的词汇。亚马逊也使用该技术来了解客户评论,改善用户体验。
机器人学
机器人学是人工智能的一个分支,专注于机器人的不同分支和应用。人工智能机器人在现实环境中代理人类行动,通过可靠的行动来产生结果。
例如,索菲亚类人机器人就是机器人学分支下的人工智能。
模糊逻辑
模糊逻辑是一种基于“真实度”原则的计算方法,而不是通常的现代计算机逻辑,比如本质上的布尔值。
模糊逻辑用于医学领域以解决涉及决策的复杂问题。它们还用于自动变速箱,车辆环境控制等。
专家系统
专家系统是基于人工智能的计算机系统,它学习并回报人类专家的决策能力。
专家系统使用if-then逻辑符号来解决复杂问题。它们不依赖于传统的程序编程。专家系统主要用于信息管理,医疗设施,贷款分析,病毒检测等方面。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15