
作者 | 李雷、宁静
来源 | 大数据文摘
“ 数据科学家是一种很宽泛的职称。虽然对于数据科学家和数据工程师有更具体的职业发展路径,但其技能需求并不存在泡沫。”
打开当下比较知名主流的一些招聘网站,得到主页如下,不限公司和薪酬搜索“数据工程师”职位
总能看到许多公司对于“数据工程师”这一职业的需求,而且明码标价,薪酬不菲,对于数据科学这个市场为什么总是感觉“供不应求”呢?
据领英(LinkedIn)市场调查,目前数据科学工作需求增加了56%。因此,现在正是进入此领域的最佳时机。
在大数据和人工智能的背景下,数据科学家的需求正在增长。但是,由于缺乏合适人选,雇主们要雇佣高级数据科学家难上加难。
一个热门求职网站给出了令人震惊的统计数据,“1月份数据科学家的需求增长了29%。自2013年以来,增长率已达到344%。虽然从职位发布看需求持续大幅增长,但数据科学方面的求职者搜索量增长却较慢(14%),这表明供需之间存在差距。“
在过去几年中,各行各业都拥有各种形式的海量数据,包括内部数据、合作伙伴、客户以及大规模业务信息。
对高级数据科学家的需求改变了市场趋势,以下是影响印度数据科学工作需求统计的主要因素:
企业数据管理之困境
企业通过客户的查询、搜索和喜好等行为收集数据,这不仅可以帮助企业了解客户,还可以基于这些统计数据来创建产品和服务。
数据科学家的核心职责是组织和推演数据,以分析预测未来的问题。数据的再计算或数据冲突,以及数据格式转换等工作是导致数据科学工作需求增加的最重要原因之一。
数据不准确或管理不善是企业的一大问题,因此,他们急需寻找数据科学家,帮助公司正确管理大数据。一些研究表明,由于数据不准确而导致的公司损失每年可能超过1300万美元。
毫无疑问,高度先进的分析工具和数据采集工具已经使数据分离变得非常简单,但是这并不能取代专业和资深的数据科学家。对能够组织数据并从中抽取有用信息的数据专家的需求永远不会减少。
根据数字安全公司金雅拓(Gemalto)所提供的2018年数据安全信心指数报告,“ 接受调查的企业中有65%表示他们无法分析或分类他们存储的所有数据。此外,89%的企业表示如果能够正确分析各种信息,他们将拥有竞争上的优势。”
实际上,这些公司一直在寻找资深的、经验丰富的数据科学家,他们可以帮助企业管理数据并利用这些信息为公司的发展服务。
新数据隐私法规
2018年,通用数据保护条例(GDPR)开始在欧盟各国实施。实时数据分析和数据的正确存储是导致市场对数据科学家需求不断增加的两个因素。
这些数据专家可以帮助企业了解重要数据和垃圾数据之间的差异。GDPR允许客户向企业申请删除个人信息,因此企业必须明白他们需要如何存储此类信息。
这使得对客户喜好和流行趋势的分析产生了巨大的变化,因此,企业再也不能失去对客户数据的管控。这些数据专家可以帮助企业在隐私规定的前提下正确地使用数据。
数据科学仍处在萌芽阶段
一个领域停滞不前,就吸引不了人才。但数据科学的发展并没有放缓的迹象,因此对于想要进入该领域的人才来说是个好消息。
随着时间的推移,数据科学也在发生着细微的变化,数据科学家这一职称变得更加具体,也使以此为职业的人可以细化其专业方向。
并非科技巨头才需要数据科学家
需要数据科学家的不再局限于Facebook,雅虎,Gmail或谷歌等大型科技公司,许多小公司也意识到他们同样需要数据分析来支持决策。
《哈佛商业评论》(HBR)发表大数据报告称,“各行业排名前三分之一的企业中,使用了数据驱动决策分析的,其生产率平均比竞争对手高5%,利润率高6%。”
虽然中小型企业并不会像大企业那样拥有大量数据,但通过筛选数据来提取有用的信息依然可以成为强大的竞争优势。
数据科学家有必备技能
研究表明,自2011年以来,94%的数据科学学科毕业生已经在该领域找到了工作。数据科学家需求的急增标志着数据科学职业未来的前景无量。求职网站Indeed.com的统计数据显示,多年来其发布的数据科学工作岗位数量一直在稳步增长。
确切地说,自2013年以来,岗位数量已经增长了256%,这表明企业已经认识到数据科学家的价值,并希望招募合适的人才。
数据增长势不可挡
大多数人都不曾留意,他们每天都会产生各种数据。根据一项关于当前和未来数据增长的研究表明,“每天有50亿消费者产生各种数字化信息,到2025年这个数字将增加到60亿,占世界人口的四分之三。”
这将需要更多的数据科学从业人员。专家对美国数据科学家的方方面面进行了研究,得到了令人难以置信的数据:
数据科学家
平均基本工资:130,000美元
职位空缺数:4,000+(56%)
职业晋升分数(满分10分):9分
顶尖技能要求:数据科学,数据挖掘,数据分析,Python,机器学习
以下是某个知名互联网公司对于“数据科学”从业者的要求:
职业发展机会
领英将数据科学家评为2019年最有前途的职业之一。其中一个原因是其平均薪水为130,000美元,此外,领英的研究还表明数据科学职位更容易获得晋升。
数据科学工作的需求量很大,实际上,各种数据科学课程的设立也印证了这一巨大的需求,数据科学家需要融合不同的技能和知识,如果你想进入这一领域,可以在线学习各行业相应的课程。
数据科学职位不仅需要分析技能,还需要针对较软技能的培训 ,这些已成为数据科学职位的必备条件。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
CDA 数据分析师:开启数据职业发展新征程 在数据成为核心生产要素的今天,数据分析师的职业价值愈发凸显。CDA(Certified D ...
2025-07-03从招聘要求看数据分析师的能力素养与职业发展 在数字化浪潮席卷全球的当下,数据已成为企业的核心资产,数据分析师岗位也随 ...
2025-07-03Power BI 中如何控制过滤器选择项目数并在超限时报错 引言 在使用 Power BI 进行数据可视化和分析的过程中,对过滤器的有 ...
2025-07-03把握 CDA 考试时间,开启数据分析职业之路 在数字化转型的时代浪潮下,数据已成为企业决策的核心驱动力。CDA(Certified Da ...
2025-07-02CDA 证书:银行招聘中的 “黄金通行证” 在金融科技飞速发展的当下,银行正加速向数字化、智能化转型,海量数据成为银行精准 ...
2025-07-02探索最优回归方程:数据背后的精准预测密码 在数据分析和统计学的广阔领域中,回归分析是揭示变量之间关系的重要工具,而回 ...
2025-07-02CDA 数据分析师报考条件全解析:开启数据洞察之旅 在当今数字化浪潮席卷全球的时代,数据已成为企业乃至整个社会发展的核心驱 ...
2025-07-01深入解析 SQL 中 CASE 语句条件的执行顺序 在 SQL 编程领域,CASE语句是实现条件逻辑判断、数据转换与分类的重要工 ...
2025-07-01SPSS 中计算三个变量交集的详细指南 在数据分析领域,挖掘变量之间的潜在关系是获取有价值信息的关键步骤。当我们需要探究 ...
2025-07-01CDA 数据分析师:就业前景广阔的新兴职业 在当今数字化时代,数据已成为企业和组织决策的重要依据。数据分析师作为负责收集 ...
2025-06-30探秘卷积层:为何一个卷积层需要两个卷积核 在深度学习的世界里,卷积神经网络(CNN)凭借其强大的特征提取能力 ...
2025-06-30探索 CDA 数据分析师在线课程:开启数据洞察之旅 在数字化浪潮席卷全球的当下,数据已成为企业决策、创新与发展的核心驱 ...
2025-06-303D VLA新范式!CVPR冠军方案BridgeVLA,真机性能提升32% 编辑:LRST 【新智元导读】中科院自动化所提出BridgeVLA模型,通过将 ...
2025-06-30LSTM 为何会产生误差?深入剖析其背后的原因 在深度学习领域,LSTM(Long Short-Term Memory)网络凭借其独特的记忆单元设 ...
2025-06-27LLM进入拖拽时代!只靠Prompt几秒定制大模型,效率飙升12000倍 【新智元导读】最近,来自NUS、UT Austin等机构的研究人员创新 ...
2025-06-27探秘 z-score:数据分析中的标准化利器 在数据的海洋中,面对形态各异、尺度不同的数据,如何找到一个通用的标准来衡量数据 ...
2025-06-26Excel 中为不同柱形设置独立背景(按数据分区)的方法详解 在数据分析与可视化呈现过程中,Excel 柱形图是展示数据的常用工 ...
2025-06-26CDA 数据分析师会被 AI 取代吗? 在当今数字化时代,数据的重要性日益凸显,数据分析师成为了众多企业不可或缺的角色 ...
2025-06-26CDA 数据分析师证书考取全攻略 在数字化浪潮汹涌的当下,数据已成为企业乃至整个社会发展的核心驱动力。数据分析师作 ...
2025-06-25人工智能在数据分析的应用场景 在数字化浪潮席卷全球的当下,数据以前所未有的速度增长,传统的数据分析方法逐渐难以满足海 ...
2025-06-25