
作者 | 李雷、宁静
来源 | 大数据文摘
“ 数据科学家是一种很宽泛的职称。虽然对于数据科学家和数据工程师有更具体的职业发展路径,但其技能需求并不存在泡沫。”
打开当下比较知名主流的一些招聘网站,得到主页如下,不限公司和薪酬搜索“数据工程师”职位
总能看到许多公司对于“数据工程师”这一职业的需求,而且明码标价,薪酬不菲,对于数据科学这个市场为什么总是感觉“供不应求”呢?
据领英(LinkedIn)市场调查,目前数据科学工作需求增加了56%。因此,现在正是进入此领域的最佳时机。
在大数据和人工智能的背景下,数据科学家的需求正在增长。但是,由于缺乏合适人选,雇主们要雇佣高级数据科学家难上加难。
一个热门求职网站给出了令人震惊的统计数据,“1月份数据科学家的需求增长了29%。自2013年以来,增长率已达到344%。虽然从职位发布看需求持续大幅增长,但数据科学方面的求职者搜索量增长却较慢(14%),这表明供需之间存在差距。“
在过去几年中,各行各业都拥有各种形式的海量数据,包括内部数据、合作伙伴、客户以及大规模业务信息。
对高级数据科学家的需求改变了市场趋势,以下是影响印度数据科学工作需求统计的主要因素:
企业数据管理之困境
企业通过客户的查询、搜索和喜好等行为收集数据,这不仅可以帮助企业了解客户,还可以基于这些统计数据来创建产品和服务。
数据科学家的核心职责是组织和推演数据,以分析预测未来的问题。数据的再计算或数据冲突,以及数据格式转换等工作是导致数据科学工作需求增加的最重要原因之一。
数据不准确或管理不善是企业的一大问题,因此,他们急需寻找数据科学家,帮助公司正确管理大数据。一些研究表明,由于数据不准确而导致的公司损失每年可能超过1300万美元。
毫无疑问,高度先进的分析工具和数据采集工具已经使数据分离变得非常简单,但是这并不能取代专业和资深的数据科学家。对能够组织数据并从中抽取有用信息的数据专家的需求永远不会减少。
根据数字安全公司金雅拓(Gemalto)所提供的2018年数据安全信心指数报告,“ 接受调查的企业中有65%表示他们无法分析或分类他们存储的所有数据。此外,89%的企业表示如果能够正确分析各种信息,他们将拥有竞争上的优势。”
实际上,这些公司一直在寻找资深的、经验丰富的数据科学家,他们可以帮助企业管理数据并利用这些信息为公司的发展服务。
新数据隐私法规
2018年,通用数据保护条例(GDPR)开始在欧盟各国实施。实时数据分析和数据的正确存储是导致市场对数据科学家需求不断增加的两个因素。
这些数据专家可以帮助企业了解重要数据和垃圾数据之间的差异。GDPR允许客户向企业申请删除个人信息,因此企业必须明白他们需要如何存储此类信息。
这使得对客户喜好和流行趋势的分析产生了巨大的变化,因此,企业再也不能失去对客户数据的管控。这些数据专家可以帮助企业在隐私规定的前提下正确地使用数据。
数据科学仍处在萌芽阶段
一个领域停滞不前,就吸引不了人才。但数据科学的发展并没有放缓的迹象,因此对于想要进入该领域的人才来说是个好消息。
随着时间的推移,数据科学也在发生着细微的变化,数据科学家这一职称变得更加具体,也使以此为职业的人可以细化其专业方向。
并非科技巨头才需要数据科学家
需要数据科学家的不再局限于Facebook,雅虎,Gmail或谷歌等大型科技公司,许多小公司也意识到他们同样需要数据分析来支持决策。
《哈佛商业评论》(HBR)发表大数据报告称,“各行业排名前三分之一的企业中,使用了数据驱动决策分析的,其生产率平均比竞争对手高5%,利润率高6%。”
虽然中小型企业并不会像大企业那样拥有大量数据,但通过筛选数据来提取有用的信息依然可以成为强大的竞争优势。
数据科学家有必备技能
研究表明,自2011年以来,94%的数据科学学科毕业生已经在该领域找到了工作。数据科学家需求的急增标志着数据科学职业未来的前景无量。求职网站Indeed.com的统计数据显示,多年来其发布的数据科学工作岗位数量一直在稳步增长。
确切地说,自2013年以来,岗位数量已经增长了256%,这表明企业已经认识到数据科学家的价值,并希望招募合适的人才。
数据增长势不可挡
大多数人都不曾留意,他们每天都会产生各种数据。根据一项关于当前和未来数据增长的研究表明,“每天有50亿消费者产生各种数字化信息,到2025年这个数字将增加到60亿,占世界人口的四分之三。”
这将需要更多的数据科学从业人员。专家对美国数据科学家的方方面面进行了研究,得到了令人难以置信的数据:
数据科学家
平均基本工资:130,000美元
职位空缺数:4,000+(56%)
职业晋升分数(满分10分):9分
顶尖技能要求:数据科学,数据挖掘,数据分析,Python,机器学习
以下是某个知名互联网公司对于“数据科学”从业者的要求:
职业发展机会
领英将数据科学家评为2019年最有前途的职业之一。其中一个原因是其平均薪水为130,000美元,此外,领英的研究还表明数据科学职位更容易获得晋升。
数据科学工作的需求量很大,实际上,各种数据科学课程的设立也印证了这一巨大的需求,数据科学家需要融合不同的技能和知识,如果你想进入这一领域,可以在线学习各行业相应的课程。
数据科学职位不仅需要分析技能,还需要针对较软技能的培训 ,这些已成为数据科学职位的必备条件。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23