
作者 | 秦泽宇、曹培信
来源 | 大数据文摘
不知道大家有没有去看鹿晗和舒淇主演的科幻片《上海堡垒》,整体讲述的是外星人入侵地球的故事,上海成为最后的根据地,而黄浦江里的上海大炮成为翻盘的唯一希望,当然了,还有鹿晗和舒淇的爱情故事。
不过上映以来,这部电影就被各种骂,导演、编剧都接连出来道歉。不过这一切的一切都已经无力回天,《上海堡垒》3.6亿的投资成本,最终票房只攀登到1.2亿多,可以说是亏得血本无归啊!
尽管豆瓣评分目前只剩下3.2分,但是评价中还是有人试图客观的分析电影失败的原因,其中一个就是故事太过烂俗。
然而随着自然语言处理(Natural Language Processing,简称NLP)的不断发展,是否在电影拍摄前就根据电影的脚本摘要预测这部电影会不会受到大众喜爱呢?
来自韩国的几名研究人员就尝试了这个方法。
四万多部电影数据,训练可预测电影好坏的AI
研究人员试图训练出一个机器学习模型,可以通过电影摘要,分辨哪些哪些电影会成功或者失败。如果人们可以进一步完善这个模型,有朝一日,制片人可以在电影制作前就能预测出这部电影在票房上是会大卖或者扑街。
为了训练这个模型,研究员使用了来自世界各地,总共42306个电影情节作为数据集,大部分来自CMU电影摘要语料库。
数据集
模型先将摘要划分成句子,并用情感分析来分析每个句子。模型将认为是“积极”的句子,譬如“Thor喜欢他的锤子”,打分更接近1。模型将认为是“消极”的句子,譬如“Thor打架了”,打分更接近-1。
最后综合两个输出进行分类,从而得出一个电影是否会成功。
模型分类架构
情节越起伏,观众越买账
通常,成功的电影,比如1951年的《爱丽丝梦游仙境》,在Rotten Tomatoes电影评价网上获得了80%的分数,情绪波动频繁;不成功的电影,比如2009年的《控制限制》情绪波动较小。研究员说,电影开头或结尾是否皆大欢喜并不重要。重要的是情绪变化频繁。
电影中的“波动性”衡量标准是将每个摘要的情绪打分压缩成一个分数,来反映情绪的变化。研究人员测试了三种不同获得最终分数的方法。这三个方法都可以准确地预测一部电影是否会受欢迎。
上面两张图中,第一张里面的电影《爱丽丝梦游仙境(Alice in Wonderland)》的开头和结尾都很积极,电影《靴子(Das Boot)》和《一个男人(A Man for All Seasons)》每一季的开头和结尾都是消极的。电影《葛底斯堡(Gettysburg)》展示了命运的逆转,开始时是消极的,结束时是积极的。人们普遍注意到,这些成功的电影有频繁的情绪波动。
而第二张则是不成功的电影的情感分析,它表现出较少的情感波动。电影《控制的极限(The Limits of Control)》和《迷失的刀锋战士(Lost Bladesman)》都有消极的开头和结尾。电影《大锅(Tai-Pan)》以消极的开头,以积极的结尾。电影《蓝舌和尚(Bluetproof Monk)》的开头和结尾都是正面的,但是在故事发展的过程中,大多数人的情绪得分都是负面的。因此,这表明情绪变化的频率可能预示着电影的成功。然而,情绪的两极对预测一部电影的成功影响甚微。
现在只能分好坏,希望将来能预测票房
研究人员在8月1日意大利佛罗伦萨举办的2019Storytelling Workshop上指出:尽管这些方法在猜测电影是否成功上表现并不出色,但是它们依旧比随机预测更加准确。
研究人员说,在未来,他们的方法会进行改进,希望能够预测一部电影的票房值,并帮助制片人决定这部电影是否值得投资。
在这个模型的应用方面,研究人员补充说,这个系统公平的评价机制对于不知名的作家来说是好事,不会因为名气小而被埋没。
同时也能潜在的帮助公众,烂片被扼杀在摇篮里,观众们也就不必浪费时间看完像《大白鲨:复仇》这样票房和口碑双扑街的烂片了。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15