京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | 小天
数据挖掘,英文名叫Data mining,一般是指从大型数据库中将隐藏的预测信息抽取出来的过程,而更为精确的解释则是“从数据中挖掘知识”。
这个概念乍眼一看有点懵,小天举个栗子解释,相信就比较容易理解:
假如某东需要预测用户在未来5天内的购买需求,以达到精准营销的目的,那么此时完全可以借助数据挖掘实现。
通过数据挖掘技术和机器学习算法,在以某东真实的用户、商品和行为数据(脱敏后)为基础的情况下,构建一个用户购买商品的预测模型,输出高潜用户和目标商品的匹配结果,从而提供高质量的目标群体,实现精准营销。
也就是说,我们能够从海量的数据中挖掘出有用知识服务于我们的工作。
而就目前而言,数据挖掘大致上是可以分为四个层次:纯粹数据加工、傻瓜式挖掘、较为自由的挖掘以及算法拆解和开发。
(一)纯粹数据加工
这一层次主要侧重于变量的加工和预处理,主要的加工工具就是大家比较熟悉的SQL和SAS base。
从源系统或数据仓库,对相关数据进行提取、加工、衍生处理,生成各种业务表。紧接着,以客户号为主键,将这些业务表整合汇总出一张大宽表,而这张宽表就是所谓的“客户画像”。
(二)傻瓜式挖掘
傻瓜式操作的优点就是让数据挖掘变得入手快且简单,但是,众所周知傻瓜式操作必然存在缺陷,比如挖掘的过程会很单调无趣,没办法批量运算模型等等。而较为典型的工具有SAS EM和clementine。
这两种工具已经嵌入了很多较为传统成熟的算法、模块和节点(如大家很熟悉的神经网络以及前几天小天提到的决策树等)。只需鼠标的托拉拽,基本上就可以满足你挖掘数据的需求。
因此,在熟练操作这些工具的情况下,若想进一步提升建议需要抛弃它们。
(三)较为自由的挖掘
在这个层次,典型的工具就是R和Python这两个开源工具,前者是统计学家开发的,而后者则是计算机学家开发的。
它们不但有较多前沿且成熟的算法包调用,还能对既有的算法包进行修改调整,以适应分析需求,十分的灵活。此外,Python在文本、社会网络方面的处理,功能比较强大。
(四)算法拆解和自行开发
到了这一层次,说明你们已经拥有了重新编写算法代码的能力,比如用自己的代码实现逻辑回归运算过程,甚至根据业务需求和数据特点,更改其中一些假定和条件,以提高模型运算的拟合效果。
一般而言,大多数人会利用python、c、c++进行算法拆解和开发。
可以看到,四个层次中出现最多的就是python,因此可以这么说掌握了python,掌握数据挖掘也就不在话下了!
而根据当前互联网的招聘和对技能的需求来说,当你已经顺利度过前三个层次的时候,建模分析师的职位是妥妥的,如果再更进一步到达了第四层次,相信你就是当之无愧的算法工程师了!
那么,怎么才能更好地掌握数据挖掘,最高效的学习路径应该是什么样的呢?
此时,我们最先要做的就是了解数据挖掘的大致流程。
(一)数据读取
既然是叫数据挖掘,那么可以看出数据是重中之重,因此第一步就应该把数据读取出来。
(二)特征理解分析
数据读出来了,但并不代表这些数据都是有用的,因此需要根据数据的特征进行理解和分析,考虑变量与结果的关系,最后绘图得出结论,辅助判断,进而选出有价值的数据。
(三)数据清洗与预处理
选出了有价值的数据就可以马上建立模型了吧?别想太多,还得先清洗和预处理数据。虽然这一步看似很简单,但是实际上它是整个数据挖掘过程中最耗时的,大概占了70-80%的时间。
如何对数据进行恰当的处理使得最终能够获取最合适的数据是这一步需要解决的。请记住,数据决定了模型的上限。
(四)建立模型
完成了最重要的第三步之后,就可以开始建模了,通过多种算法的对比以及参考他人的策略进行建模与优化,最终得出合适的模型。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据分析与建模中,“显性特征”(如用户年龄、订单金额、商品类别)是直接可获取的基础数据,但真正驱动业务突破的往往是 “ ...
2025-11-07在大模型(LLM)商业化落地过程中,“结果稳定性” 是比 “单次输出质量” 更关键的指标 —— 对客服对话而言,相同问题需给出一 ...
2025-11-07在数据驱动与合规监管双重压力下,企业数据安全已从 “技术防护” 升级为 “战略刚需”—— 既要应对《个人信息保护法》《数据安 ...
2025-11-07在机器学习领域,“分类模型” 是解决 “类别预测” 问题的核心工具 —— 从 “垃圾邮件识别(是 / 否)” 到 “疾病诊断(良性 ...
2025-11-06在数据分析中,面对 “性别与购物偏好”“年龄段与消费频次”“职业与 APP 使用习惯” 这类成对的分类变量,我们常常需要回答: ...
2025-11-06在 CDA(Certified Data Analyst)数据分析师的工作中,“可解释性建模” 与 “业务规则提取” 是核心需求 —— 例如 “预测用户 ...
2025-11-06在分类变量关联分析中(如 “吸烟与肺癌的关系”“性别与疾病发病率的关联”),卡方检验 P 值与 OR 值(比值比,Odds Ratio)是 ...
2025-11-05CDA 数据分析师的核心价值,不在于复杂的模型公式,而在于将数据转化为可落地的商业行动。脱离业务场景的分析只是 “纸上谈兵” ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-05教材入口:https://edu.cda.cn/goods/show/3151 “纲举目张,执本末从。” 若想在数据分析领域有所收获,一套合适的学习教材至 ...
2025-11-04【2025最新版】CDA考试教材:CDA教材一级:商业数据分析(2025)__商业数据分析_cda教材_考试教材 (cdaglobal.com) ...
2025-11-04在数字化时代,数据挖掘不再是实验室里的技术探索,而是驱动商业决策的核心能力 —— 它能从海量数据中挖掘出 “降低成本、提升 ...
2025-11-04在 DDPM(Denoising Diffusion Probabilistic Models)训练过程中,开发者最常困惑的问题莫过于:“我的模型 loss 降到多少才算 ...
2025-11-04在 CDA(Certified Data Analyst)数据分析师的工作中,“无监督样本分组” 是高频需求 —— 例如 “将用户按行为特征分为高价值 ...
2025-11-04当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31