京公网安备 11010802034615号
经营许可证编号:京B2-20210330
北京CDA数据分析就业班50期学员
姓名kmell:庞同学
毕业院校:北京工业大学
专业:信息管理与信息系统
入职信息:玖富集团,数据分析师,北京
就业感言:
一、学习阶段:(远程版)
由于一些个人原因选择了远程学习的方式,较现场学习而言,从学习的态度和方法上都有很多不同之处。
首先,远程学习需要较强的自控力和持之以恒的耐心,并不会有人严格监督你的打卡和听课质量,所以在了解自身情况的基础上去选择适合自己的方式才是一个好的开端(自控力不足的小伙伴建议果断现场学习,理想很丰满现实很骨感)。持之以恒的耐心在于三个月的学习对我们来说并不是一个很短的周期,在整个学习的过程中,各模块知识点对你来说可能有难有易,有感兴趣的也有不太关注的,那么就需要去平衡他们,找到良性循环的方式:最基本的要保证听课的完整,因为无论哪部分内容总有你不太了解的知识点,先保证漏斗的开口足够大,才能为最终吸收的知识奠定基础;接下来要明确哪些内容是你的核心需求,因为人的精力都是有限的,不可能一上来就把方方面面学到极致,在学习前我们都应该明确自己的目的和目标,课程内容的设置也都能提前了解到,对于你的目标工作岗位的核心技术要求就是需要你重点关注的,那么无论难易都要花更多的时间精力去学习和练习,这些内容具体的排期你也要了解以便提前准备不受其他各种因素影响,比如SQL,统计知识等(像python和机器学习就要看每个人具体的目标岗位的设定了);三个月下来,我们并不需要保持每天时刻的高率学习(当然我们也做不到),而是应该有的放矢,劳逸结合,达到事半功倍的学习效果,这样也有助于我们保有持之以恒的耐心。
其次,学习方法上我使用三种模式(但对于远程小伙伴而已,保证这些模式效率的前提是你手边最好准备两台电脑,一台直播课程,一台跟着操作以及记录):
1. 对于熟悉或容易的知识点,上课用xmind做笔记,建立知识框架,紧跟课程节奏,熟悉的知识点简要记录,重要以及易忘的可以突出标记,课后根据框架梳理一遍并补全课上没记全的内容,例题和作业自己都再单独完成一遍,确保思虑清晰完整。
2. 对于不太熟悉且重点模块的知识,最好提前预习,不然上课就是完全懵(至少可以把涉及到的一些基本概念先理解一遍),上课遇到难点不理解的可以先记录之后找机会询问,尽量在当天多理解多记录多询问,还可以课间/晚自习讨论或上网搜一些资料答疑解惑,因为录播一般都是第二天课后才更新,当天课程如果落下太多可能会影响第二天的听课效果。但看录播复习也是重要一环,在整个课程的学习中,我对于不熟悉的知识点通常都会在后期观看2-3遍录播视频,每多学习后面的一部分知识再回过来复习前面的内容都会有新的认知理解和收获,同时对于知识点之间的连接也非常有帮助。
3. 对于知识的运用是我们学习的最终目的,所有的理论知识也都是为了支持实践,第三个模式贯穿整个学习过程,就是建立一个练习文件夹,像SQL,Python可以搜罗一些练习题来熟悉命令操作等。其他模块可以利用网上的数据或自己工作上的数据甚至是老师提供的练习数据,去作为一个分析项目来完成,从数据提取,清洗整理,描述性统计甚至建模做一些挖掘工作,到最终的数据可视化及数据分析结论报告的产出。项目输出的完整性既有助于我们把各部分知识整合起来,还锻炼了分析问题的思路,从中我们还会遇到很多实际问题,去解决,去优化,切身感受数据分析工作中的点滴(课程后期的案例和你自己学习过程中完成的一个个小项目都可以作为将来面试中的项目经历)。
二、就业阶段:
对于找工作的过程,我总结了几个关键点:
1. 准备要充分:如果说前面的三个月的学习都是纸上谈兵,那么找工作就开始真枪实干了,请拿好枪再上战场,不然一次次的失败可能会让你失去勇气和信心。简历和面试技巧在面试前老师都会协助我们做准备,但面试终究是要自己单打独斗,所有写在简历上的内容以及从面试时说出来的话,都必须是我们提前准备好且对答如流的,不然干脆就不要提及(这是亲身踩过的坑,不要给自己挖坑)。
2. 面试节奏和优先级安排:建议趁刚学完对知识比较熟悉的时候保持每天2个的面试量,岗位或公司不太满意的也不要一味拒绝,可以排在理想公司面试的前面,作为一个锻炼自我的机会,完善面试经验,为后续更好的发挥做铺垫。
3. 保持良好心态:心态为什么重要?如果你的能力不行,那么心态再好也没法通过面试,但是如果因为前期的失利导致自己心态崩了,不自信,破罐破摔不好好去准备后面的面试,那么那些本可以抓住的机会可能也就此错过了,导致陷入恶性循环,所以正视每一次的面试结果,总结问题。
最后,希望小小分享可以给小伙伴们带来一些帮助,也祝愿大家都能通过学习丰富自己,最终get到自己理想的工作
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
数据分析师的日常,常始于一堆“毫无章法”的数据点:电商后台导出的零散订单记录、APP埋点收集的无序用户行为日志、传感器实时 ...
2025-11-28在MySQL数据库运维中,“query end”是查询执行生命周期的收尾阶段,理论上耗时极短——主要完成结果集封装、资源释放、事务状态 ...
2025-11-28在CDA(Certified Data Analyst)数据分析师的工具包中,透视分析方法是处理表结构数据的“瑞士军刀”——无需复杂代码,仅通过 ...
2025-11-28在统计分析中,数据的分布形态是决定“用什么方法分析、信什么结果”的底层逻辑——它如同数据的“性格”,直接影响着描述统计的 ...
2025-11-27在电商订单查询、用户信息导出等业务场景中,技术人员常面临一个选择:是一次性查询500条数据,还是分5次每次查询100条?这个问 ...
2025-11-27对数据分析从业者和学生而言,表结构数据是最基础也最核心的分析载体——CRM系统的用户表、门店的销售明细表、仓库的库存表,都 ...
2025-11-27在业务数据可视化中,热力图(Heat Map)是传递“数据密度与分布特征”的核心工具——它通过颜色深浅直观呈现数据值的高低,让“ ...
2025-11-26在企业数字化转型中,业务数据分析师是连接数据与决策的核心纽带。但“数据分析师”并非单一角色,从初级到高级,其职责边界、能 ...
2025-11-26表格结构数据以“行存样本、列储属性”的规范形态,成为CDA数据分析师最核心的工作载体。从零售门店的销售明细表到电商平台的用 ...
2025-11-26在pandas数据处理工作流中,“列标签”(Column Labels)是连接数据与操作的核心桥梁——它不仅是DataFrame数据结构的“索引标识 ...
2025-11-25Anaconda作为数据科学领域的“瑞士军刀”,集成了Python解释器、conda包管理工具及海量科学计算库,是科研人员、开发者的必备工 ...
2025-11-25在CDA(Certified Data Analyst)数据分析师的日常工作中,表格结构数据是最常接触的“数据形态”——从CRM系统导出的用户信息表 ...
2025-11-25在大数据营销从“粗放投放”向“精准运营”转型的过程中,企业常面临“数据维度繁杂,核心影响因素模糊”的困境——动辄上百个用 ...
2025-11-24当流量红利逐渐消退,“精准触达、高效转化、长效留存”成为企业营销的核心命题。大数据技术的突破,让营销从“广撒网”的粗放模 ...
2025-11-24在商业数据分析的全链路中,报告呈现是CDA(Certified Data Analyst)数据分析师传递价值的“最后一公里”,也是最容易被忽视的 ...
2025-11-24在数据可视化实践中,数据系列与数据标签的混淆是导致图表失效的高频问题——将数据标签的样式调整等同于数据系列的维度优化,或 ...
2025-11-21在数据可视化领域,“静态报表无法展现数据的时间变化与维度关联”是长期痛点——当业务人员需要分析“不同年份的区域销售趋势” ...
2025-11-21在企业战略决策的场景中,“PESTEL分析”“波特五力模型”等经典方法常被提及,但很多时候却陷入“定性描述多、数据支撑少”的困 ...
2025-11-21在企业数字化转型过程中,“业务模型”与“数据模型”常被同时提及,却也频繁被混淆——业务团队口中的“用户增长模型”聚焦“如 ...
2025-11-20在游戏行业“高获客成本、低留存率”的痛点下,“提前预测用户流失并精准召回”成为运营核心命题。而用户流失并非突发行为——从 ...
2025-11-20