京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析就业班49期学员
姓 名:殷同学
入职信息:上海**征信有限公司,数据分析,15K
就业感言
我在2018年底开始接触Python和数据分析,感觉有很多应用空间有待开发,可以作为工作的一个方向。自学了一段时间后,发现头绪比较多,就想报一家培训机构系统学习下,在网上搜索到了CDA,感觉课程从软件编程技术和机器学习理论两个方面从入门到提高都比较系统,于是最终选择了CDA。完成全部课程后,并最终于今年五月份找到风控建模的工作岗位。
学习心得方面,结合我目前的工作说一下吧,EXCEL比较重要,在处理数据样例时用的最多,数据透视表,数组,聚合函数,文本处理函数使用最多。MYSQL目前用的不多,但是处理数据的逻辑基本出自MYSQL的学习。数理统计虽然比较基础和枯燥,但非常重要,尤其是做回归模型的步骤建议重点掌握。PYTHON中文本的处理,Panda和Numpy,绝对是每天陪伴你的工具,建议在熟悉PYTHON基本操作后重点看这方面,多做练习。机器学习算法我建议以理论理解优先,会发现在理解了理论后,对各种算法的python实现可以借助网络资源来实现,上手会比较快。案例课很重要,一定要自己动手实现一遍,一是数据软件处理的基本技巧,在日常工作中用处很大,二是分析的思路,刚开始可能没思路,可以先照猫画虎,多练几遍就会有感觉。
找工作方面,数据分析应用方向多,不同方向侧重点不同,建议多掌握CDA给的各种总结,我主要针对的是风控建模方向,应用是银行中小企业和个人贷款的审核与贷后管理,主要应用逻辑回归和决策树目前,我当时面试初面比较简单,简单聊了过往工作经历和对银行风控建模的理解,由于之前确实没有相关工作经验,主要强调自身的学习能力和职业规划。然后是笔试,发了一系列数据,要求写一个模型开发报告,这时用到了评分卡案例课的内容,完全按照老师讲课思路来写的。终面是模型总监,完全技术向的面试,主要涉及逻辑回归建模过程,如何分箱,IV值计算,变量选择,模型解释及评价,AUC,KS,评分卡打分,决策树,gini系数,信息熵和提升算法,交叉验证。还是建议在理论上要吃透,然后尽可能结合实际业务逻辑去解释,比如一个人贷款余额比较多,违约风险高,woe值会随余额提高由正转负等。最后csdn,知乎和简书上有大量相关到位总结,多看看很有用。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26