
古往今来,人类一直在探求科技的极限。随着信息技术在21世纪的爆发,数据科学与人工智能技术迎来自己的春天,尤其是以深度学习为基础的人工智能技术可谓是大放异彩,在诸多领域远胜人类,并且如人脸识别这样的技术也纷纷落地,甚至悲观者认为,机器智能时代来临,倘若某天机器有了自主思维,人类将会面临灭顶之灾。可是,深度学习就如此无所不能吗?答案是否定的!深度学习是利用深层神经网络的技术,虽然在图像识别等方面已经能够超越人类,但是它仍然有许多方面是不能完成的,本文列举深度学习目前不能实现的一些领域,希望能够帮大家打开思维,更好地认识深度学习。
既是学霸,又是游戏王
一般来说,多数人每年可以看300篇文献,而IBM的Watson系统在10分钟里就可以阅读2000万的文献,显而易见,深度学习的学习能力是远远大于人类的,是个十足的“学霸”。与此同时,在游戏领域,不管是围棋还是dota2,深度学习有足够的能力碾压人类。所以深度学习既是学霸,又是游戏王。
多才多艺
下棋,写诗,作曲,艺术画······2016年,阿尔法狗大胜李世石,2017年微软小冰出版第一部诗集,随后又开始转向音乐创作·····深度学习已经慢慢变成琴棋书画样样精通,多才多艺全能王。
从深度学习所取得的成果来看,它似乎已经无所不能,在诸多方面超过了人类。
算法输出不稳定,容易被攻击
在图像识别领域,我们可能在一张图像中只改变一个像素点的值,那么输出结果会发生巨大改变,这就是算法输出不稳定导致的,这种细微的改变在人类看来微不足道,对于算法模型来说确不同。不仅在图像领域,自然语言处理领域也有这样的问题。在问答系统中,在原始文本中随机得加入一些简单的词,模型的理解能力大大降低。这种问题不仅出现在深度学习,传统机器学习更容易被攻击。
模型复杂度高,难以纠错或调试
在2016年阿法狗与李世石的大战中,李世石赢了一局。在李世石的78手后,阿法狗的胜率便直线下降。如果可以投降的话,那么在李世石的第78手后,阿法狗应该会选择投降,而并不会针对这一手进行相应的改进。此外,在深度学习进行翻译时,不管是给模型什么数据输入,都会有一个有意义的输出。此前的谷歌翻译曾遇到过这样的问题,在翻译结果有明显错误的时候,翻译部门的工程师也很难去对模型修改,可见深度学习模型的复杂。
层级复合程度高,参数不透明
在图像识别领域,我们在模型的中间层中尽力去抓取图像的特征。在第一层的卷积层计算后,我们对结果进行可视化,可以很容易看出结果与原图像有很大相似性。然后,随着层数的加深,对中间其他层的可视化,我们完全不能看出中间层所代表的意义。主要原因在于感受野的复合,而且每层的卷积核也会产生复合,加上一些模型会有自己特有的复合,如inception模块的复合,残差的复合,让我们难以从中间层的可视化中看到模型具体运行的结果。
对数据依赖性强,模型增量性差
深度学习是端到端结构,灵活性非常低。我们将单个图像拼接在一起,人类很容易识别的内容,深度学习确无能为力,可见其迁移能力较差。在“语义标注”和“关系检测”这类问题中,人类可以通过完成一个任务中的多个子任务,并将子任务整合的方式解决问题,而对于深度学习来说,多个子任务与一个总任务是完全不同的两个任务,需要不同的模型去解决问题。在数据量较小的情况下,模型拟合能力较差。
专注直观感知类问题,对开放性问题无能为力
我们小时候都曾学习过关于乌鸦喝水的故事。乌鸦在面对半瓶水,而自己的嘴够不着水时,会往瓶子里丢入石子,使得水面上升从而喝到水。此外,乌鸦在无法拨开坚果时,它会把坚果丢在马路上,让来往的车辆碾压从而迟到果实,在此过程中,乌鸦能够通过观察人行道的情况学会判断车辆是否会行驶以保障自己的安全。而鹦鹉也有自己的智能,在听过人类重复说过的话后,鹦鹉能够很好地模仿人类说话。深度学习只能做到鹦鹉的智能,而做不到乌鸦的智能,可见其泛化能力之低。此外,深度学习也难以理解图像背后的寓意。当一幅图中出现奥巴马与一群大象时,深度学习仅仅能辨认图中是一个男人与一群大象,显然图作者却是想透过图片暗喻美国的两党之争,一般来说,大象喻指美国民主党。
机器偏见难以避免,人类知识难以有效监督
这可能是目前深度学习面临的最大问题。数据是深度学习的基础,而数据的可靠程度决定了模型的可靠程度。微软层开发聊天机器人Tay,模仿年轻网民的语言模式。但是试用24小时后便被引入歧途,成为偏激的种族主义者,甚至发出了“希特勒无罪”的消息。原因在于年轻的网民本身的语料库并不是纯净的,是人就会有偏见,这种偏见在网络中尤其严重,这样便导致了Tay用来训练的数据带有偏见,并使得Tay误入歧途,而人类知识的监督很难有效采用,这就无法避免机器的偏见。另一个例子,美国法院用以评估犯罪风险的算法COMPAS,也被证明对黑人造成了系统性歧视。机器偏见无法消除,日后可能会给人类带来严重的后果。
不可否认,深度学习可以在特定领域超过人类,有很好的效果,但它并非万能。某种意义上说,它离智能还差很远。目前,对深度学习的泛化性与可解释性的呼声越来越高。2017年7月,国务院在《新一代人工智能发展规划》中提出“实现具备高可解释性,强泛化能力的人工智能”。或许下一代人工智能技术还是在深度学习基础之上展开,但是希望新的技术能够很好地解决现在深度学习的不能,更好地造福人类!
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15在机器学习入门领域,“鸢尾花数据集(Iris Dataset)” 是理解 “特征值” 与 “目标值” 的最佳案例 —— 它结构清晰、维度适 ...
2025-10-15在数据驱动的业务场景中,零散的指标(如 “GMV”“复购率”)就像 “散落的零件”,无法支撑系统性决策;而科学的指标体系,则 ...
2025-10-15在神经网络模型设计中,“隐藏层层数” 是决定模型能力与效率的核心参数之一 —— 层数过少,模型可能 “欠拟合”(无法捕捉数据 ...
2025-10-14在数字化浪潮中,数据分析师已成为企业 “从数据中挖掘价值” 的核心角色 —— 他们既要能从海量数据中提取有效信息,又要能将分 ...
2025-10-14在企业数据驱动的实践中,“指标混乱” 是最常见的痛点:运营部门说 “复购率 15%”,产品部门说 “复购率 8%”,实则是两者对 ...
2025-10-14在手游行业,“次日留存率” 是衡量一款游戏生死的 “第一道关卡”—— 它不仅反映了玩家对游戏的初始接受度,更直接决定了后续 ...
2025-10-13分库分表,为何而生? 在信息技术发展的早期阶段,数据量相对较小,业务逻辑也较为简单,单库单表的数据库架构就能够满足大多数 ...
2025-10-13在企业数字化转型过程中,“数据孤岛” 是普遍面临的痛点:用户数据散落在 APP 日志、注册系统、客服记录中,订单数据分散在交易 ...
2025-10-13在数字化时代,用户的每一次行为 —— 从电商平台的 “浏览→加购→购买”,到视频 APP 的 “打开→搜索→观看→收藏”,再到银 ...
2025-10-11在机器学习建模流程中,“特征重要性分析” 是连接 “数据” 与 “业务” 的关键桥梁 —— 它不仅能帮我们筛选冗余特征、提升模 ...
2025-10-11在企业的数据体系中,未经分类的数据如同 “杂乱无章的仓库”—— 用户行为日志、订单记录、商品信息混杂存储,CDA(Certified D ...
2025-10-11在 SQL Server 数据库操作中,“数据类型转换” 是高频需求 —— 无论是将字符串格式的日期转为datetime用于筛选,还是将数值转 ...
2025-10-10