
在数据分析工作中,数据可视化虽然只是最后一个步骤,但也是必不可少的一个步骤,好比一个产品再怎么出色,也得有一个展示自己的平台,才能让观众看到它的优秀和魅力。所以说,我们在学习数据分析知识的时候一定不能落下数据可视化的学习,在这篇文章中我们就重点给大家介绍一下数据可视化的未来发展趋势。
数据可视化工作的第一个发展趋势就是协作,这是因为数据仓库是数据的集中来源,但是真正的分析和洞察发生在台式机上,人工组合多个源。下一代平台允许多个用户通过API或数据虚拟化来发布数据源、算法和洞察。如果实现这样的要求能够为我们工作提高效率。
当然多实体也是数据可视化的发展趋势,分析平台越来越多地被组织的多个部门甚至是跨组织使用。平台不仅仅用于共享数据,洞察力、可视化和算法可以跨组织边界共享。这样就能够加强数据分析的解析能力。
而多源同样是数据可视化的发展趋势之一,这是因为许多组织专注于内部数据源进行分析,但往往忽视了公共和第三方数据源的不断增加,这些数据源可用来增强分析解决方案。这种将来自多个数据源的数据混合的能力是至关重要的,但是它需要对数据输入有复杂的管理方法,包括许可和更新。否则,外部数据源可能会过时或不准确,所以说不能够再混用。
数据可视化还需要做到自动化,这是为了确保分析团队的效率,工作流自动化正在迅速成为一种必需品。当然,随着数据融合和更新变得更加复杂,自动化数据收集、处理和跟踪也变得更重要。组织开始把主要研究平台,如调查工具,与工作流自动化和可视化组件结合,以简化工作,提高分析的质量。
如果数据可视化实现智能的话那就更好不过了,这是从多个来源获得高质量的数据仅仅是分析组织真正目的的先决条件,从数据中获得高价值的见解。它越来越多地应用机器学习和人工智能处理结构化和非结构化数据源。前沿组织正在将这些工具应用于以前无法访问的数据。
最后,数据可视化需要做到的就是实时,互联网永远在线的特性让我们来到一个即时满足的世界。这也是分析解决方案的例子,而用历史数据分析已经是不可能的了。因此,数据收集和分析的批处理方法将被随需应变的数据更新所取代。这给平台的计算需求带来了压力,因为它需要实时处理不断增加的数据量。它还会对数据可用性施加压力,确保最近的数据源被用于分析。
在这篇文章中我们给大家介绍了关于数据可视化的未来发展趋势,通过对这些知识的讲解我们不难发现数据可视化的发展前景是非常乐观而且日趋重要的,可以肯定的是——未来数据可视化能够为我们呈现出的功能将会更多,而与此同时也说明我们需要掌握的知识也将更加完善和广阔。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15