京公网安备 11010802034615号
经营许可证编号:京B2-20210330
面对新一轮的技术引领浪潮,如何在信息化建设中加强大数据安全管理,防止大而无序、大而无力、大而无安,争取实现大有所长、大有所用,至关重要。大数据是指规模远远超过传统处理和存储能力的海量数据集合,具有规模性、多样性、实时性、价值性等显著特点。传统孤立的碎片数据价值显性化、即时性特征十分明显,而大数据会随着量的积累和技术的进步不断升值。与传统信息安全注重保护显性价值、即时价值不同,大数据价值的安全保护,亟待注重显隐价值和动态防护。大数据时代,线上与线下、虚拟与现实、软件与硬件重叠交错、跨界影响,尤其是核心的大数据不可避免地成为各种利益诉求的集散地、国与国之间进行渗透的重要渠道。从我国情况看,当前仍处于大数据发展的起步阶段,大数据在面临传统安全风险的同时,还面临着数据能否自有掌控、处理能否自主实现、应用能否规范有序、安全能否有所保障等新的安全风险。
习近平总书记在中央网络安全和信息化领导小组第一次会议上强调指出,没有网络安全就没有国家安全,没有信息化就没有现代化。近年来,随着信息化进入大数据时代,国民经济、国防建设等社会各行各业乃至公民个人的状态信息和行为轨迹正在广泛以数据方式记录下来。国家在网络空间的数据主权,已经成为继陆海空天之后又一新的主权领域。面对新一轮的技术引领浪潮,如何在信息化建设中加强大数据安全管理,防止大而无序、大而无力、大而无安,争取实现大有所长、大有所用,至关重要。
一、大数据时代下的数据安全特征
大数据是指规模远远超过传统处理和存储能力的海量数据集合,具有规模性、多样性、实时性、价值性等显著特点。大数据之“大”,不仅在于海量数据的“大规模”,更重要的体现在:通过涉及各行各业乃至个体各类数据源产生数据轨迹的“大覆盖”,推动各类同构、异构数据的“大融合”,提升分析数据内在规律和发展趋势的“大智慧”,实现从数据到信息、到显隐价值挖掘的“大应用”。与传统信息安全不同,大数据安全具有如下新的特征:
据管理的风险增加。传统信息系统好像是封闭的花园,往往依靠关卡式、闸门式的“围墙”进行安全防护。随着大数据时代数据的“雾化”、泛化,传统封闭独立的“围墙”被海量分散的、流动性极强的数据洪流所冲破。数据来源庞杂带来了数据采集的安全风险,数据种类众多带来了数据的整合与存储安全风险,外部数据需求和用户隐私保护带来了数据审计和安全发布风险。
数据获取方式更为隐蔽。大数据时代,遍布全球各个角落的传感器等电子设备正在实时获取用户的行为轨迹,名目多样的各类云服务也在不经意间诱使用户主动上传信息,数据的攫取越来越公开化、在线化。与此同时,大数据时代的数据获取方式更为隐蔽,往往通过大量数据关联获取价值。比如通过资金流、物流、消费流、能源流轨迹的数据分析,即可洞察一个区域的经济运行态势。
数据的价值显隐并存、动态变化。传统孤立的碎片数据价值显性化、即时性特征十分明显,而大数据会随着量的积累和技术的进步不断升值。今天看似杂乱无章、毫无规律的数据,明天可能会显现出超出想象的价值。因此,与传统信息安全注重保护显性价值、即时价值不同,大数据价值的安全保护,亟待注重显隐价值和动态防护。
数据安全的影响空前广泛。大数据时代,线上与线下、虚拟与现实、软件与硬件重叠交错、跨界影响,尤其是核心的大数据不可避免地成为各种利益诉求的集散地、国与国之间进行渗透的重要渠道。数据安全既影响商业、金融等经济安全,也可能涉及文化意识形态等精神领域,甚至可能会激发社会动荡、改变战争形态、影响国家安全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03