
面对新一轮的技术引领浪潮,如何在信息化建设中加强大数据安全管理,防止大而无序、大而无力、大而无安,争取实现大有所长、大有所用,至关重要。大数据是指规模远远超过传统处理和存储能力的海量数据集合,具有规模性、多样性、实时性、价值性等显著特点。传统孤立的碎片数据价值显性化、即时性特征十分明显,而大数据会随着量的积累和技术的进步不断升值。与传统信息安全注重保护显性价值、即时价值不同,大数据价值的安全保护,亟待注重显隐价值和动态防护。大数据时代,线上与线下、虚拟与现实、软件与硬件重叠交错、跨界影响,尤其是核心的大数据不可避免地成为各种利益诉求的集散地、国与国之间进行渗透的重要渠道。从我国情况看,当前仍处于大数据发展的起步阶段,大数据在面临传统安全风险的同时,还面临着数据能否自有掌控、处理能否自主实现、应用能否规范有序、安全能否有所保障等新的安全风险。
习近平总书记在中央网络安全和信息化领导小组第一次会议上强调指出,没有网络安全就没有国家安全,没有信息化就没有现代化。近年来,随着信息化进入大数据时代,国民经济、国防建设等社会各行各业乃至公民个人的状态信息和行为轨迹正在广泛以数据方式记录下来。国家在网络空间的数据主权,已经成为继陆海空天之后又一新的主权领域。面对新一轮的技术引领浪潮,如何在信息化建设中加强大数据安全管理,防止大而无序、大而无力、大而无安,争取实现大有所长、大有所用,至关重要。
一、大数据时代下的数据安全特征
大数据是指规模远远超过传统处理和存储能力的海量数据集合,具有规模性、多样性、实时性、价值性等显著特点。大数据之“大”,不仅在于海量数据的“大规模”,更重要的体现在:通过涉及各行各业乃至个体各类数据源产生数据轨迹的“大覆盖”,推动各类同构、异构数据的“大融合”,提升分析数据内在规律和发展趋势的“大智慧”,实现从数据到信息、到显隐价值挖掘的“大应用”。与传统信息安全不同,大数据安全具有如下新的特征:
据管理的风险增加。传统信息系统好像是封闭的花园,往往依靠关卡式、闸门式的“围墙”进行安全防护。随着大数据时代数据的“雾化”、泛化,传统封闭独立的“围墙”被海量分散的、流动性极强的数据洪流所冲破。数据来源庞杂带来了数据采集的安全风险,数据种类众多带来了数据的整合与存储安全风险,外部数据需求和用户隐私保护带来了数据审计和安全发布风险。
数据获取方式更为隐蔽。大数据时代,遍布全球各个角落的传感器等电子设备正在实时获取用户的行为轨迹,名目多样的各类云服务也在不经意间诱使用户主动上传信息,数据的攫取越来越公开化、在线化。与此同时,大数据时代的数据获取方式更为隐蔽,往往通过大量数据关联获取价值。比如通过资金流、物流、消费流、能源流轨迹的数据分析,即可洞察一个区域的经济运行态势。
数据的价值显隐并存、动态变化。传统孤立的碎片数据价值显性化、即时性特征十分明显,而大数据会随着量的积累和技术的进步不断升值。今天看似杂乱无章、毫无规律的数据,明天可能会显现出超出想象的价值。因此,与传统信息安全注重保护显性价值、即时价值不同,大数据价值的安全保护,亟待注重显隐价值和动态防护。
数据安全的影响空前广泛。大数据时代,线上与线下、虚拟与现实、软件与硬件重叠交错、跨界影响,尤其是核心的大数据不可避免地成为各种利益诉求的集散地、国与国之间进行渗透的重要渠道。数据安全既影响商业、金融等经济安全,也可能涉及文化意识形态等精神领域,甚至可能会激发社会动荡、改变战争形态、影响国家安全。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
评判两组数据与初始数据准确值的方法 在数据分析与研究中,我们常常会面临这样的情况:需要对通过不同方法、不同过程得到的两组 ...
2025-08-01通过 COX 回归模型诊断异常值 一、COX 回归模型概述 COX 回归模型,又称比例风险回归模型,是一种用于生存分析的统计方法。它能 ...
2025-08-01CDA 数据分析师报考条件详解:迈向专业认证的指南 在数据分析行业蓬勃发展的当下,CDA 数据分析师认证成为众多从业者提升专业 ...
2025-08-01K-S 曲线、回归与分类:数据分析中的重要工具 在数据分析与机器学习领域,K-S 曲线、回归和分类是三个核心概念与工具,它们各 ...
2025-07-31大数据时代对定性分析的影响 在大数据时代,海量、多样、高速且低价值密度的数据充斥着我们的生活与工作。而定性分析作为一 ...
2025-07-31CDA含金量分析 在数字经济与人工智能深度融合的时代,数据驱动决策已成为企业核心竞争力的关键要素。CDA(Certified Data Analys ...
2025-07-31SASEM 决策树:理论与实践应用 在复杂的决策场景中,如何从海量数据中提取有效信息并制定科学决策,是各界关注的焦点。SASEM 决 ...
2025-07-30SPSS 语法使用详解 在当今数据驱动的时代,SPSS( Statistical Package for the Social Sciences)作为一款功能强大的统计分析软 ...
2025-07-30人工智能对CDA数据分析领域的影响 人工智能对 CDA(Certified Data Analyst,注册数据分析师)数据分析领域的影响是全方位、多层 ...
2025-07-30MySQL执行计划中rows的计算逻辑:从原理到实践 MySQL 执行计划中 rows 的计算逻辑:从原理到实践 在 MySQL 数据库的查询优化中 ...
2025-07-29左偏态分布转正态分布:方法、原理与实践 左偏态分布转正态分布:方法、原理与实践 在统计分析、数据建模和科学研究中,正态分 ...
2025-07-29CDA 数据分析师的职业生涯规划:从入门到卓越的成长之路 在数字经济蓬勃发展的当下,数据已成为企业核心竞争力的重要来源,而 CD ...
2025-07-29CDA数据分析师证书考取全攻略 一、了解 CDA 数据分析师认证 CDA 数据分析师认证是一套科学化、专业化、国际化的人才考核标准, ...
2025-07-29解析神经网络中 Softmax 函数的核心作用 在神经网络的发展历程中,激活函数扮演着至关重要的角色,它们为网络赋予了非线性能力, ...
2025-07-29解析 response.text 与 response.content 的核心区别 在网络数据请求与处理的场景中,开发者经常需要从服务器返回的响应中提取数 ...
2025-07-29鸢尾花判别分析:机器学习中的经典实践案例 在机器学习的世界里,有一个经典的数据集如同引路明灯,为无数初学者打开了模式识别 ...
2025-07-29用 Python 开启数据分析之旅:从基础到实践的完整指南 在数据驱动决策的时代,数据分析已成为各行业不可或缺的核心能力。而 Pyt ...
2025-07-29从 CDA LEVEL II 考试题型看 Python 数据分析要点 在数据科学领域蓬勃发展的当下,CDA(Certified Data Analyst)认证成为众多从 ...
2025-07-29CDA 数据分析师的工作范围解析 在数字化时代的浪潮下,数据已成为企业发展的核心资产之一。CDA(Certified Data Analyst)数据分 ...
2025-07-29解析 insert into select 是否会锁表:原理、场景与应对策略 在数据库操作中,insert into select 是一种常用的批量数据插入语句 ...
2025-07-29