京公网安备 11010802034615号
经营许可证编号:京B2-20210330
筑牢我国大数据管理的安全防线(2)_数据分析师
从我国情况看,当前仍处于大数据发展的起步阶段,大数据在面临传统安全风险的同时,还面临着数据能否自有掌控、处理能否自主实现、应用能否规范有序、安全能否有所保障等新的安全风险。针对这些问题,应尽快从强化数据立法、加快自主自控、注重显隐价值保护三方面筑牢我国大数据安全管理的防线,实现以安全保发展、以发展促安全的良好局面。
强化数据安全立法工作,防止“大而无序”。目前,我国大数据安全的理论和实践还不够成熟,应用的规范和技术标准体系还不完善,包括大数据在内的信息安全相关法律制度还没有建立。公共应用与专业应用、安全应用与非安全应用之间的统筹不够,层出不穷的新模式、新应用缺乏底线约束和规则规范,特别是对数据安全带来巨大隐患、对产业生态造成巨大破坏的新模式还缺乏有效制约。防止管理应用“大而无序”,一要尽快从法理层面提出国家数据主权。尽快组织制定国家层面的数据信息安全法律,积极参与国际相关标准、规则制定,规范国家数据空间主体的义务和权利,防止发达国家利用技术先行优势侵犯其他国家数据主权。二要加快大数据安全法制建设。借鉴各类安全立法与司法经验,完善数据安全相关法律法规制定,对数据的获取、使用、应用等责任和权利进行明确的法律界定,对非法监控行为制定处罚标准,构筑民事、行政与刑事责任三位一体的数据安全法律框架,提升数据空间的法制治理能力。
尽快实现对关键装备、核心领域与人才的自主自控,防止“大而无力”。当前,我国大部分数据的产生、获取、处理和存储仍然依靠国外的软硬件设施,大量数据使用别人造的“车”、行驶在别人造的“路”上、停靠在别人建的“库”里,很容易被监控窃取。例如,西方依靠各种互联网渠道及网络窃听技术,控制了大量的互联网数据流量,“数字鸿沟”正在演化成为“数据鸿沟”。防止自主自控“大而无力”,一要加快自主研发关键装备。对技术成熟的国产设备,建议在国计民生、国家安全等关键领域推广使用,加快国产化替代步伐。对尚不成熟的设备领域,要集中力量和资源进行重点攻关。二要尽快切入核心领域。对于一时无法完全用国产设备替代的关键核心领域,坚持以应用促发展,在使用中完善,在完善中替代。三要加大人才培养力度。整体规划我国大数据安全人才的培养、引进和使用,形成学业、职业、产业三位一体的培育体系。
高度重视大数据显隐价值保护,防止“大而无安”。目前,我国关键基础设施领域仍采用传统数据安全理念和技术手段,被动应对多、主动防护少,许多领域面临着平时被控、战时被瘫的风险。比如美国的“棱镜门”事件,折射出我国在数据安全防护上还存在很多漏洞。防止风险防护“大而无安”,一要坚持显性与隐性价值保护并重。对能够预测到的隐性价值提前采取措施加以保护,慎重对待涉及国家经济安全、国防安全等关键敏感领域大数据的应用和开放。二要加强分类分级管理。建立大数据安全等级保护制度,制定涉及个人隐私、商业秘密和政府保密数据采集使用和保护的规章制度,对国防、交通、能源、金融、通讯、政府公务、医疗、物流、个人等重要信息系统采取相应等级的保护措施。三要建立军民联防的大数据安全管理防护体系。建立军地合作、攻防一体的数据安全应用和应急管理响应体系;注重“平战结合”,做到平时数据建设应用有序,战时数据控制优先保证国防安全的需要。总之,要以国家核心安全需要为牵引,多措并举实现大数据安全保障。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03