
我们在做数据挖掘工作或学习数据挖掘课程的时候需要注意很多的事情,在这篇文章中我们就从数据转换成文本、数据装箱、Naive Bayes算法、聚类分析模型这四个方面讲解需要注意的地方。希望这篇文章能够帮助到大家。
1.数字转换文本
我们在进行将数字转换为文本的时候,通常执行编码是为了简化数据输入或者节省数据库的存储空间,不过此编码可能导致值的性质和意义不明确。此外,由于离散值以数字形式存储,当我们在应用程序之间移动数据时,可能会遇到数据类型转换错误,这些值可能被计算或被视为连续值。若要避免此类问题,应该在开始数据挖掘之前,将数值标签转换回离散的文本标签。
2.数字装箱
在进行对数字进行装箱的时候,从原则来说,所有数值都是无限的并因此是连续的,但在我们对信息进行建模时,可能会发现将可用值离散化或装箱可能更有效。我们可以通过许多方式将数据装箱,第一种方式就是指定数目有限的存储桶并且让算法对存储桶中的值进行排序。这是我们通过创建某些分组集合,自己预先对值进行分组。使用此方法,这样常常会丧失值的真正分布,但范围更易于用户读取。让算法确定存储桶的最佳数目以及值的分布。这是大多数工具中的默认行为,但我们可以在数据挖掘工具栏向导中重写这些默认行为。而某些在外接程序中使用的算法需要特定的数据类型或内容类型才能创建模型。这样就需要我们对算法的使用多加重视。
3.Naive Bayes模型,
一般来说,Naive Bayes 算法不能使用连续列作为输入。这意味着,我们必须对数字装箱,或者如果值足够少,可以按离散值处理。当然此类模型也不能预测连续值。因此,如果要预测连续数字,应先将值装箱到有意义的范围中。如果不确定合适的范围,可以使用聚类分析算法确定数据中的数字聚类。基于此算法使用向导时,向导会对连续列装箱。
4.聚类分析模型
在聚类分析模型中,聚类分析工具也不能使用连续数字,但这两个工具都会自动对数字列装箱。这两种工具都向您提供选项以便可以选择结果中输出类别的数目,但是,如果想要控制对单独列中的值进行分组的方式,则应该通过所需分组来创建新列。
在这篇文章中我们给大家介绍了很多数据挖掘中需要注意的地方,具体就是数据转换成文本、数据装箱、Naive Bayes算法、聚类分析模型的相关知识。当然,这些都是在数据挖掘工作中需要注意的事情,我们在做数据挖掘工作或学习过程中一定要重视这些细节。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02