
中国大数据的十大发展方向(2)_数据分析师
方向六:数据共享联盟的成立
对于大数据来说,未来,将可能将不同的行业更加细分,针对不同的行业有着不同的分析技术。但是同样对于大数据来说,数据的多少虽然不意味着价值更高,但是更多的数据无疑更有助于一个行业的分析价值的发现。例如,对于医疗行业,如果每一个医院对自己的数据进行分析,相信也能够获得相应的价值,但是如果想获得更多的更大的价值,那么就需要全国,甚至全世界的医疗信息共享,这样才能够通过平台进行分析,获取更大的价值,所以为了,数据可能会呈现一种共享的趋势,数据联盟可能出现。
5、大数据安全越来越受重视
方向七:大数据安全越来越受重视
随着数据的价值的越来越重要,大数据的安全稳定也将会逐渐被重视,大数据不断增长,无论对数据存储的物理安全还是对数据的管理方式都要求越来越高,从而对数据的多副本与容灾机制提出更高的要求。
6、大数据安全
2013年,网络和数字化生活也使得犯罪的分子更容易获取关于他人的信息,也有更多的骗术和犯罪手段出现,所以,在大数据时代,无论对于数据本身的保护,还是对于由数据而演变的一些信息的安全,都将至关重要。
方向八:大数据将催生一些新的行业
一个新行业的出现,必将在工作职位方面有新的需求,大数据的出现也将推出一批新的就业岗位,例如,大数据分析师,数据管理专家等等。具有丰富经验的数据分析人才将成为稀缺的资源,数据驱动型工作将呈现爆炸式的增长。
7、中国成为大数据最重要的市场
方向九:大数据将成为企业IT核心
随着大数据价值逐渐被发展,大数据将成为企业IT的核心,毕竟在这个以盈利为主导的行业环境中,谁能够为企业带来更多的价值就将会更重要。在以往,IT系统更多的在企业中是扮演辅助工作的任务,而随着大数据的发展,IT系统也将具有更大的意义。如今,社会化数据分析也正在崛起,这对于IT和非IT来说都影响深远。越来越多的企业将开始分析舆情、地理位置、行为、社交图景和富媒体社会化数据来更好地了解客户需求,进行更有效的风险管理,IT部门也开始利用社交媒体应用协作解决问题,或者定义需求。
方向十:中国成为大数据最重要的市场
中国在未来将可能成为大数据最重要的市场,中国拥有世界上五分之一的人口,同时中国的发展正在处于快速的上升期。中国产生的数据将是巨大的,而巨大的数据对大数据的发展将起到促进的作用,而大数据在中国市场的发展也将领先。本文来自:CDA数据分析师培训官网
全文总结:大数据将给中国的市场带来更广泛的发展机会,对于中国来说这个市场是非常有前景的,是值得大家重视的一个市场。各行业的客户和各行业的开发商也应该在大数据市场抓住机会,借助自己的优势创造更多的价值,在未来激烈的市场竞争中借助大数据走的更远。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19CDA 数据分析师:让统计基本概念成为业务决策的底层逻辑 统计基本概念是商业数据分析的 “基础语言”—— 从描述数据分布的 “均 ...
2025-09-19CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-19SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16