京公网安备 11010802034615号
经营许可证编号:京B2-20210330
我们都知道,古今成大事者,都会经历三重境界,第一重境界是昨夜西风凋碧树,独上高楼,望尽天涯路。第二重境界是衣带渐宽终不悔,为伊消得人憔悴。第三重境界是众里寻他千百度,蓦然回首,那人却在灯火阑珊处。当然,在机器学习总也有三重境界,那么机器学习的三重境界是什么呢?下面我们就给大家详细解释一下。
机器学习的第一重境界就是能使用,也就是利用已知方法解决问题。具体来说就是给定一个模型,只要能够用它来根据给定的输入来求解输出,也就是利用已知的方法来解决问题。那么这个已知的方法,我们可以把它看成一个黑箱子,我不关注这个过程,不关注这个方法是如何解决问题,只要能够解决问题就行。可能已经有了一个算法,那么我们只需要对数据做一些处理,把这个数据送入到算法当中,得到一个输出,我们能看明白这个输出是怎么回事,这就可以。这是能使用的阶段,我们只是做一个算法的使用者,我能把它用清楚就够了。
机器学习的第二重境界就是能看懂,也就是理解已知方法的工作原理,在这一阶段中,我们不光用这个已知的方法来解决问题,同时我们还能够理解这个方法的工作原理。知道其中的现象,还能知道为什么这样。也就是知其然,并且能知其所以然。能使用就是知其然,能看懂就是知其所以然。那么这个方法可能背后有一些数学推导,会涉及到一些概率,最优化,还有线性代数的一些使用。那么这个能看懂,就要求我们具备相关的知识,能够把这个推导的过程给它顺下来,知道这个方法具体是怎么来工作。
机器学习的第三重境界就是能设计,具体就是根据问题特征开发新方法。如果在这个能看懂的基础上,再进一步的话,我们可以把它叫做能设计。我们把已知方法理解之后,我们还可以根据我的问题,根据我们的实际问题的特点,来开发一些新的方法。当然我们也可以对已有的方法进行改进,使它更符合我自己的一个待解决问题的方法,那么很显然,这个呢,对于数学功底就有更深层次的一个要求。
所以说,机器学习的三个境界就是能使用、能看懂、还能设计。在学习过程中,我们需要知道自己能够做到什么程度。当然,知识水平的掌握程度越高,能够解决问题的能力越高,所以说,我们要努力提高我们的机器学习的境界。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01