京公网安备 11010802034615号
经营许可证编号:京B2-20210330
大数据在电力上的应用_数据分析师
越来越多的数据影响和改变着我们的生活,大数据世界到底是怎样的?它会给我们的生活、工作、学习带来什么?中国在这场变革中将扮演怎样的角色?现任牛津大学网络学院互联网研究所教授,被誉为“大数据时代的预言家”的维克托〃迈尔-舍恩伯格,最有资格回答上述问题。
在商界,他的咨询客户包括微软、惠普和IBM等全球顶级的企业;在政界,他是欧盟互联网官方政策的制定者和参与者之一,先后担任新加坡商务部高层、文莱国防部高层、科威特商务部高层、迪拜及中东政府高层的智囊;在传媒界,许多知名媒体给予他高度评价。《经济学人》说,在大数据领域,他是最受人尊敬的权威发言人之一;《科学》说,若要发起一场关于大数据问题的深入讨论,没有比他更好的发起者了。 近日,《亮报》记者专访了这位洞见大数据时代发展趋势的数据科学家、畅销书《大数据时代》作者维克托〃迈尔-舍恩伯格,让我们来听听他眼中的大数据是怎样的。
智能电网的理念,是通过获取更多的我们如何用电、怎样用电的信息,来优化电的生产、分配以及消耗。在本质上,智能电网是大数据在电力上的应用。同样,智慧城市的互联设备,也会依靠大数据来确保其工作的有效性。 大数据为我们带来全新的视角 《亮报》:您为什么会提出大数据这个概念?我们应该怎样理解大数据?
维克托:如今,很多人关注到了“大数据”这个概念,以大数据为主要内容的著作也不少。很多人认为,所谓大数据仅仅意味着我们生活、工作中存在着的许许多多的数字而已。这样未免以偏概全,就好像说我们坐着飞机去旅行,从飞机上往外看时,我们只能看到飞机的两翼。 实际上,“大数据”并不是很大或者很多数据。数字只是大数据概念的一个方面,并非大数据的本质。大数据给予我们的不仅是数字的简单叠加,它为我们提供了一种全新的理解和分析问题的方式。 我所著的《大数据时代》这本书,目的是讲述大数据给人类社会带来的基础性的变革,解释为什么商业、人群以及社会能够从大数据中获益。
我认为,大数据从思维、商业、管理三个维度会给人类带来变革和挑战。在大数据时代,处理数据理念上有三大转变:“不要随机样本,而是全体数据”“不是精确性,而是混杂性”“不是因果关系,而是相关关系”。 《亮报》:在实际应用上,大数据会对哪些行业产生影响,产生什么样的影响? 维克托:大数据开启了一次重大的时代转型,无论是商业、思维还是管理,都无时无刻不在受到数据的影响和改变。
由于有了大数据,我们能够从大量的数据中洞察到世界各行各业以及人类的行为规律。举个例子,通过大数据,我们能够预测到两个星期以后航空公司的机票价格,并且准确得令人惊讶。 还有很多重大的事件都是大数据能够预测到的,比如流感的扩散、通货膨胀率的增长等,我们可以在事情发生前就主动采取措施,而不是事情发生了几个星期或几个月后才去做。很多时候,数据是最权威的,它可能会有悖于常人的惯有思维和认识,但它却是最客观准确的。
大数据促使商业满足个性化需求 《亮报》:请您具体谈谈大数据在生活中的应用有哪些?对生活会产生怎样的改变?对于普通人来说,我们应该如何更好地应用大数据为我们带来便利? 维克托:生活中的各个方面都会因大数据发生变化。在医疗保健方面,与按照人类平均水平给予标准化的药物治疗相比,大数据可以针对个人所需给予针对性的药物治疗,以便改善身体状况。在教育方面,教师可以准确地知道一个学生需要什么样的帮助,什么方法对不同的孩子最有效,这样学习就能比现在获得更大的提高。 利用大数据,我们可以对汽车进行“预测性保养”,通过分析大数据,我们在发动机真正报废之前就能知道它什么时候可能要坏掉了,这样我们就可以采取一些预防措施。
对于我们普通人来说,在应用大数据上,我们自己不用做太多。爆炸式增长的商业机构会利用大数据为人们提供新兴的服务。我们需要做的,就是利用大数据为我们带来的一些新的可能性。 实际上,我们已经从大数据中获益了。举例来说,我们用搜索引擎搜索出结果,或者用垃圾邮件过滤器屏蔽垃圾邮件,这些都是大数据带来的好处。 《亮报》:大数据能解决所有问题吗?为什么? 维克托:大数据不能解决所有问题。现在,大数据已经成为很多人谈论的问题,这导致人们以为,大数据能解决所有问题,而当大数据无法解决某些问题的时候,人们就会认为大数据其实很无能,于是抛弃了大数据。
我要说的是,大数据能够帮助我们理解事务之间是如何相关且联系的,它能帮我们做出比现有结果更好的预测。这是一个巨大的进步。我们现在要做的是让大家知道大数据是什么,能起到怎样的作用以及我们应该如何利用大数据。
大数据并不是一个充斥着算法和机器的冰冷世界,人类的作用依然无法被完全替代。大数据为我们提供的不是最终答案,只是参考答案,帮助是暂时的,而更好的方法和答案还在不久的将来。 中国是数据潜力大国 《亮报》:在大数据时代中,中国扮演着怎样的角色,会起到怎样的作用? 维克托:中国是具有巨大潜力的大国。无论是商业还是社会,无论是大事还是小事,大数据都会帮助决策者做出更好的、更准确的、更明智的决定。通过大数据,中国会发掘出更多潜力。 在《大数据时代》这本书中,我们也描述了大数据所带来的弊端,其中,对个人隐私的威胁便是其中之一。我建议,在大数据时代,应建立新的、能够更好地针对隐私信息的法律。西方现有的很多法律,只适用于小数据时代。
在大数据时代,法律需要调整和重建。比如,政府不能仅仅依靠一个笼统的管理政策,而是要制定更细、针对性更强的法律法规,使它能够覆盖所有应用数据的领域。在这方面,如果中国先行动起来,将会超越西方。 《亮报》:在智能电网、智慧城市以及电动汽车的发展中,大数据起到了怎样的作用? 维克托:智能电网的理念,是通过获取更多的我们如何用电、怎样用电的信息,来优化电的生产、分配以及消耗。在本质上,智能电网是大数据在电力上的应用。同样,智慧城市的互联设备,也会依靠大数据来确保其工作的有效性。 在电动汽车的应用上,IBM做过一项工作。
IBM曾与加利福尼亚的太平洋天然气与电气公司以及汽车制造商本田合作,收集了大量信息来回答关于电动汽车应在何时何地获取动力及其对电力供应的影响等基本问题。 基于大量的信息输入,如汽车的电池电量、汽车的位置、一天中的时间以及附近充电站的可用插槽等,IBM开发了一套复杂的预测模型。它将这些数据与电网的电流消耗及历史功率使用模式结合起来。通过分析来自多个数据源的巨大实时数据流和历史数据,能够确定司机为汽车电池充电的最佳时间和地点,并揭示充电站的最佳设置点。
最后,系统需要考虑附近充电站的价格差异,即使是天气预报,也要考虑到。例如,如果是晴天,附近的太阳能供电站会充满电,但如果预报未来一周都会下雨,那么太阳能电池板将会被闲置。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22