
现如今,数据可视化是一个备受关注的事物,很多人在自己的工作中都会使用到数据可视化这一工具去展示数据,数据可视化在各个领域中都有重要的应用,由此可见数据可视化是一个十分重要的技术。那么我们应该如何看待数据可视化这个技术呢?下面我们就给大家介绍一下数据可视化的相关知识。
其实我们可以这样认为,数据可视化降低了数据分析的门槛,这是由于数据可视化让理解数据变得十分简单,观众不是统计学专家,不懂各种复杂的数学公式,也一样可以快速的从图中发现一些问题,探察到潜在的商业价值,从而帮助制定更好的商业决策。同时,数据可视化工具也降低了观众的学习成本,观众并不需要了解那些专业的统计学工具、建模工具如何使用,也不需要回任何编程语言,只需要将数据连接上,通过托拉拽等方式,就可以很容易地理解数据包含的意思。
从上面的内容我们不难发现数据可视化是大数据中重要的一环,其实由于这几年随着互联网的发展越发的快速了起来,曾有统计显示,全球数据量正以平均年增长率50%的速度在增长着,而当前数据总量的80%都是最近两年产生的。由此可见,现在正是数据的时代。而面对如此庞大的数据量,如何利用是一个关键。大数据可以做很多事,我们在使用数据可视化的时候需要有一个明确的目标,这个目标具体就是让数据能被更好地理解,并且与其他工具一样使企业能够把握不断增长的数据流。当然还必须促进数据发现,从而帮助人们进行更好地决策。
大家都知道,任何事物都是有两面性的,大数据也不例外,如果我们用好了大数据就能够造福用户,如自动驾驶、阿尔法狗都是人类智慧、机器智能和大数据的结晶。但是如果用不好,那就是对资源的浪费和对个人隐私的侵犯,所以我们可以引用一句名言,那就是狄更斯说的:这是最好的时代,也是最坏的时代;这是智慧的年代,也是愚蠢的年代;这是信仰的时期,也是怀疑的时期;这是光明的季节,也是黑暗的季节;这是希望的春天,也是失望的冬天;大伙儿面前应有尽有,大伙儿面前一无所有。所以说,我们在使用大数据的时候还是需要掌控其方向,这样才能够促进人类社会的发展。
那么数据可视化和报表有什么需要我们注意的呢?其实对于数据可视化这个词以及数据可视化工具与报表和传统的报表工具如Excel、PPT的区别是需要大家了解的,其实这二者有很多相似之处,而且很多数据可视化的展示就是静态报表。然而数据可视化很重要的一点在于其交互性,通过动态的方式来展示,相较于静态的报表涵盖的信息量更大。
在这篇文章中我们给大家介绍了很多关于数据可视化的相关知识,通过这些知识我们不难发现数据可视化是一个十分实用的工具,因此我们很有必要去掌控数据可视化这一门工具技能,让数据可视化为我们做出更大的贡献。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15