
我们都知道,要想让工作效率提高,有一个好的工具是很有必要的,这就是老祖宗所说的“工欲善其事,必先利其器”。这句话适用于任何工作,当然大数据也不例外,就目前而言,大数据越来越受到大家的重视,也逐渐成为各个行业研究的重点,如果想搞好大数据,那么就必须好好选择工具。当然,大数据行业因为数据量巨大的特点,传统的工具已经难以应付,所以我们要选择一个合适的工具,那么大数据常用的软件工具有哪些呢?下面我们就给大家介绍一下大数据的工具。
我们在进行大数据分析之前,需要数据挖掘,而对于数据挖掘来说,由于数据挖掘在大数据行业中的重要地位,所以使用的软件工具更加强调机器学习,常用的软件工具就是SPSS Modeler。SPSS Modeler主要为商业挖掘提供机器学习的算法,同时,其数据预处理和结果辅助分析方面也相当方便,这一点尤其适合商业环境下的快速挖掘,但是它的处理能力并不是很强,一旦面对过大的数据规模,它就很难使用。
如果对于传统分析和商业统计来说,常用的软件工具有Excel、SPSS和SAS。Excel是一个电子表格软件,相信很多人都在工作和学习的过程中,都使用过这款软件。Excel方便好用,容易操作,并且功能多,为我们提供了很多的函数计算方法,因此被广泛的使用,但它只适合做简单的统计,一旦数据量过大,Excel将不能满足要求。SPSS和SAS都是商业统计才会用到的软件,为我们提供了经典的统计分析处理,能让我们更好的处理商业问题。同时,SPSS更简单,但功能相对也较少,而SAS的功能就会更加丰富一点。
如果在大数据可视化这个领域中,最常用目前也是最优秀的软件莫过于TableAU了。TableAU的主要优势就是它支持多种的大数据源,还拥有较多的可视化图表类型,并且操作简单,容易上手,非常适合研究员使用。不过它并不提供机器学习算法的支持,因此不难替代数据挖掘的软件工具。关系分析。关系分析是大数据环境下的一个新的分析热点,其最常用的是一款可视化的轻量工具——Gephi。Gephi能够解决网络分析的许多需求,功能强大,并且容易学习,因此很受大家的欢迎。但由于它是由Java编写的,导致处理性能并不是那么优秀,在处理大规模数据的时候显得力不从心,所以也是有着自己的局限性。
关于大数据行业常用的软件工具我们就给大家介绍到这里了,其实文中介绍的这些工具的功能都是比较强大的,虽然有着不少的局限性,但由于大数据行业分工比较明确,所以也能使用。希望这些工具能够帮助大家提高工作效率。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01