京公网安备 11010802034615号
经营许可证编号:京B2-20210330
无论是哪个行业的工作者,都会有自己行业擅长的领域,以及需要具备的技能。对于一位数据分析师来说也是如此,只有掌握一些必备的技能,才能顺利地完成相应的数据分析工作。那么大家知道数据分析师必备技能都有哪些吗?下面就挑其中最重要、也是最常用的两个技能来为大家介绍一下。
1.数据分析师必备技能之编程
既然是做数据分析工作,那么肯定就要有数据才行,可是数据从哪里来呢?当然需要从互联网上获取。我们需要的信息、数据就是从互联网经过滤处理提取而来的。数据获取这一过程就要用到Python爬虫,爬虫主要就是为数据分析中的数据获取来提供帮助的,而Python就是编程语言的一种。
编程知识的难度是比较大的,对于数据分析师来说,如果能够掌握编程这项技能,那么学习其他知识的时候也会更加轻松。如果想要成为一位高级数据分析师的话,那么一定要学会编程知识,这也是初级数据分析师和高级数据分析师的重要区别之一。数据分析师主要学习的编程语言为Python和R语言。其中Python是目前比较流行的编程语言之一,可用性较高,却学习难度适中,很适合入门者学习。而R语言更适合统计分析、绘图,都很适合数据分析师学习并掌握。
2.数据分析师必备技能之SQL
在学会编程语言之后,就可以着手开始学习SQL了。SQL其实就是数据库,数据分析师既然是跟数据打交道,那么就免不了要使用数据库。就目前而言,普遍使用的数据库主要有四种:分别是SQLite、MySQL、MongoDB、Redis。其中SQLite是一个文件型轻量级数据库,它的特点处理速度很快,更适合在数据量不是很大的情况下使用SQLite;MongoDB是一个面向文档的非关系型数据库,功能强大、灵活、易于拓展;Redis是一个使用ANSIC编写的高性能key-value数据库,使用内存作为主存储器;MySQL是一个应用极其广泛的关系型数据库,它是开源免费的,可以支持大型数据库,很多中小型企业使用的都是MySQL。
以上就是为大家介绍的数据分析师必备的两种技能,分别是编程和数据库。其中编程语言的学习是有一定难度的,但是只要掌握之后,再学习其他的一些知识就会更简单一些,更容易理解和应用。另外,在上文也为大家简单介绍了一下当前使用率较高的四种数据库,大家可以根据公司企业的规模,或是自己的具体需求有选择性地学习。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26