
在上一篇文章中我们给大家详细介绍了很多有关数据可视化的知识,通过这些知识,我们可以看出,虽然数据可视化是一个比较简单的事情,但是有很多的细节需要我们去注意,只有这样我们才能够做好数据可视化的工作。那么要想做好数据可视化还需要注意什么呢?我们现在就给大家详细的介绍一下这些知识。
数据可视化需要注意的就是排版,排版布局增强信息可视化的叙事性。这就需要我们重视一下排版布局四大基本原则。第一,就是对比,如果两个项不完全相同,就应当使之不同,而且应当是截然不同。第二就是重复,设计的某些方面在整个作品中重复。第三就对齐,任何元素都不能在页面上随意安放。每 项都应当与页面上的某个内容存在某种视觉联系。第四就是亲密性,将相关的项组织在 起,使它们的物理位置相互靠近相关的项将被看作凝聚为一体的一个组。而在这样小的空间里有多个单独的元素,读者的眼睛要停下来多次才能看清这张名片上的所有信息,而且容易使读者对信息产生歧义。当然,把相关的元素分为一组,通过对齐、对比等手段突出,用重复和亲密性建立信息间的联系,那么,现在这个名片不论从理解上还是视觉上看都很有条理,而且这样一来,它还能更清楚的表达信息。
其次就是注意动态动态增加信息可视化的视觉体验,在信息可视化的视觉表达中,动态将相互分离的各种信息传播形式有机地融合在 起,进行有节奏的信息处理、传输和实现。通过造型和色彩的运动,满足受众的视觉感受,同时将信息内容更加深刻地传达给受众,使整个信息传达的过程更加轻松。而对于数据可视化有诸多工具,而这些工具功能都十分强大,但对于非专业可视化而又经常与图表打交道的职场人士来说,一款轻便易学而又实用的可视化软件则显得十分重要。
如果需要展现的数据结构不是特别复杂,而又要把数据展现的绚丽多彩,而且具有交互性,而使用工具可以使用水晶易表这一个工具,水晶易表是一个十分好用的工具,具体来说有三个优点,第一就是基于矢量的SWF图形格式,跨平台流畅播放,空间占用小,可将分析结果直接嵌入到PowerPoint、PDF文件、Outlook和Web上。第二就是简单易学易上手,无需额外编程。水晶报表基于excel,短期内就可精通水晶易表绝大部分常用功能了,并且能够举一反三。第三就是美观实用,多个实用性控件和主题可设计出夺人眼球的报表。演示性的、交互性的、动态的趋势分析型报表能满足各种交互功能。
通过这篇文章我们可以看出数据可视化的重要性了吧?数据可视化是数据分析工作中最后的步骤,当然也是不容忽视的,所以我们要想做好数据分析工作,就从注重数据可视化开始吧。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29