京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上一篇文章中我们给大家讲了大数据改变人们的思维的一种方式,其中就是大数据改变了以往的分析数据的方式,大数据分析的数据量变得比以往多了很多,不再分析随机数据而是分析所有数据,在这篇文章中我们接着给大家说一下大数据是怎么改变人们的思维方式的。
大数据分析的数据变得更杂了,对于数据不再要求精确性,而是混杂性。这是因为执迷于精确性是信息缺乏时代和模拟时代的产物。只有5%的数据是结构化且能适用于传统数据库的。如果不接受混乱,剩下95%的非结构化数据都无法被利用,只有接受不精确性,我们才能打开一扇从未涉足的世界的窗户。而大数据的简单算法比小数据的复杂算法更有效。由此可见,大数据需要的数据是一种更加真实的数据。
在大数据时代要求我们重新审视精确性的优劣。如果将传统的思维模式运用于数字化、网络化的21世纪,就会错过重要的信息。执迷于精确性是信息缺乏时代和模拟时代的产物。可以说,在许多技术和社会领域,大数据分析更倾向于繁杂的数据。我们不用了解正确的数据是多少了,而是在数量规模变大的时候, 确切的数量已经不那么重要了。当然,数据更新得非常快,甚至在刚刚显示出来的时候可能就已经过时了。所以我们就必须及时的使用数据。
当我们想要获得大规模数据带来的好处,混乱应该是一种标准途径,而不应该是竭力避免的。如果接受混乱,我们就能享受极其有用的服务,这些服务如果使用传统方法和工具是不可能做到的,因为那些方法和工具处理不了这么大规模的数据。倘若当我们的视野局限在我们可以分析和能够确定的数据上时,我们对世界的整体理解就可能产生偏差和错误。不仅失去了去尽力收集一切数据的动力,也失去了从各个不同角度来观察事物的权利。所以在大数据的时代中,我们需要的是更加真实的数据,而不是整理过的数据。这样我们就能够得到一个更加真实的分析结果。
以上的内容就是我们为大家解答的大数据是怎么改变人们的思维,就是我们需要分析的数据变得更杂了,对于数据不再要求精确性,而是混杂性。希望这篇文章能够给大家带来帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16