
在上面的内容中我们给大家介绍了数据分析步骤的详细内容,但是大家在进行数据分析工作的时候除了需要掌握数据分析的步骤还是需要做到数据分析工具的使用的,那么数据分析的工具都需要掌握哪些呢?我们在这篇文章中给大家详细的解答一下这个问题。
一般来说,对于数据分析刚刚入门的小白来说,excel工具是一个不错的选择,Excel虽然简单,但是学习excel也是一个循序渐进的过程。在基础内容的学习中,我们需要学习简单的表格数据处理、打印、查询、筛选、排序,在函数和公式的学习中,我们需要学习常用函数、高级数据计算、数组公式、多维引用、function。在可视化图表的学习中,我们需要学习图形图示展示、高级图表、图表插件。而数据透视表、VBA程序开发中,我们需要平常多思考如何用excel来解决问题,善用插件。在Excel工具中,函数和数据透视表是两个重点。这是因为制作数据模板必须掌握的,而必须掌握的Excel函数有很多,我们就分类进行解答。
首先是日期函数,日期函数包括day,month,year,date,today,weekday,weeknum。日期函数是做分析模板的必备,可以用日期函数来控制数据的展示,查询指定时间段的数据。然后就是数学函数,数字函数包括product,rand,randbetween,round,sum,sumif,sumifs,sumproduct。接着就是统计函数,统计函数就是指large,small,max,min,median,mode,rank,count,countif,countifs,average,averageif,averageifs。统计函数在数据分析中具有举足轻重的作用,求平均值,最大值,中位数,众位数都用得到。然后就是查找和引用函数,这类函数就是choose,match,index,indirect,column,row,vlookup,hlookup,lookup,offset,getpivotdata。这几个函数的作用不用多说,特别是vlookup,不会这个函数基本上复杂报表寸步难行。然后就是文本函数,文本函数就是指find,search,text,value,concatenate,left,right,mid,len。这几个函数多半用在数据整理阶段使用。最后就是逻辑函数,逻辑函数就是and,or,false,true,if,iferror等。我们如果学会了这些函数以后,基本上能够独当一面了。
由于篇幅原因我们就给大家介绍到这里了,大家在进行数据分析工作的时候一定要重视数据分析工作的基本内容,这样才能够做好数据分析工作,尤其是Excel工具的使用,希望这篇文章能够给大家带来帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01CDA 数据分析师:企业数字化转型的核心引擎 —— 从能力落地到价值跃迁 当数字化转型从 “选择题” 变为企业生存的 “必答题”, ...
2025-09-01数据清洗工具全景指南:从入门到进阶的实操路径 在数据驱动决策的链条中,“数据清洗” 是决定后续分析与建模有效性的 “第一道 ...
2025-08-29机器学习中的参数优化:以预测结果为核心的闭环调优路径 在机器学习模型落地中,“参数” 是连接 “数据” 与 “预测结果” 的关 ...
2025-08-29