京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在进行数据挖掘工作的时候,我们要针对数据分析的目的进行数据挖掘,这就需要我们重视数据挖掘工作的每一个步骤,如果数据挖掘工作做得好,那么数据分析工作也必然不差,那么在进行数据挖掘工作的时候需要注意什么问题呢?下面就有我们为大家解答一下这个问题。
很多人在开始数据挖掘时,都或多或少的有些疑问,那就是“我需要多少数据?”一般来说,刚接触数据挖掘的人通常会遇到与 Excel 数据有关的问题,如需要在列中一致地设置数据格式、清除缺失值或对数字装箱。对于数据挖掘工作,我们需要注意的第一点就是选择数据。
选择数据,就是选择分析数据可能是数据挖掘过程中最重要的部分,甚至比算法选择更重要。原因在于,数据挖掘通常不是由假设驱动,而是由数据驱动。数据挖掘可以接收数据并发现新关联,而不是提前选择和测试变量。数据的质量和数量可能会显著影响结果。而在选择数据的时候,都需要遵守规则。
这里说的规则具体来说有八条,第一条就是数据挖掘工作中获取尽可能干净的数据。第二条就是尝试任何模型之前执行数据事件探查。第三,需要先理解数据,然后才能发现其中的含义。第四,使用外接程序中的工具查找最大值和最小值、最常见的值和平均值。第五,填写缺失值。外接程序或者算法可提供用于输入缺失值的工具。第六,尽可能更正错误的数据。数据挖掘项目经常充当新数据质量方案的推动力。第七,尝试生成测试模型,通过这种方式查找数据问题。尝试将数据转换为不同格式,或尝试将数字存入桶。转换数据时,经常会出现模式。将数字置于合适的箱中,减少要分析的值的数量。第八,创建多个版本的数据,生成多个模型。有关如何选择、修改和检查数据的其他提示,请参阅数据挖掘准备清单。
数据挖掘工作中需要注意的事情有很多,由于篇幅原因我们就给大家介绍到这里了,在这一篇文章中我们给大家介绍了选择数据需要注意的事情,选择数据具体需要注意的就是上面提到的八点内容,注意到这些就能够做好数据挖掘工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26