京公网安备 11010802034615号
经营许可证编号:京B2-20210330
在上一篇文章中我们给大家介绍了数据挖掘工作中的选择数据需要注意的内容,选择数据中需要注意八点,只有做到了这八点我们才能够做好数据挖掘工作,我们在这篇文章中接着给大家说一下数据挖掘工作需要注意的其他内容。
在数据挖掘的关联模型中,需要的数据通常多得多,如果分析很多属性,千行数据都可能不够。如果数据集太大或太小,通过将行合为类别有时可以获得更好的结果。当然,如果数据集大小合理,应更注重数据质量而不是添加越来越多的数据。达到一定数据量后,会发现统计上有效的所有模式,添加更多数据不会提高其有效性。相反,添加更多数据,有时可能引入意外关联。
在离散数值与连续数值中,由于离散列包含数目有限的值。通常来说,文本通常被视为离散值。离散值有一些重要属性。如果将数字视为离散值,则它们之间不隐含任何顺序,这就无法对数字计算平均值或总和。电话区号就是离散数值数据,不会用来执行数学运算。离散值有时候称作类别值,因为您可以按离散值对一组数据进行分组,而对于按无限序列排列的数值,则不能按其对数据进行分组。如果值是明确分开并且不可能有小数值或小数值没有用时,您也可以确定将数字视为离散值。
而连续数值数据可包含无限个小数值。收入列即为连续属性列的示例。如果您指定某一列为数值,则该列中的每个值都必须是数值,只有 null 除外。请注意,在 Excel 中,可以考虑时间戳以及可转换为 SQL Server 数据类型的任何其他日期时间表示形式。如果将数字转换为分类变量的话,离散化对分析提供许多好处。好处之一是缩小了问题空间。另一好处是数字有时不适合表示结果。这就是数据离散化的原因。
而如果创建一个包含连续数据的挖掘模型,之后又希望将列视为离散的,则是不可能的。两个数据集必须以不同的方式处理,作为单独的挖掘结构在后端进行处理。如果不确定数据的正确处理方式,应创建单独的模型以不同方式处理数据。
这篇文章中我们给大家介绍了数据挖掘需要注意到地方,尤其是在离散数值以及连续数值中的选择,我们只有知道了这些数据的优点才能够更好地利用好这些数据。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26