京公网安备 11010802034615号
经营许可证编号:京B2-20210330
也许你是一位管理客户的负责人,当你看到客户响应率降低,你想知道原因;也许你是一家公司的营销经理,当你看到注册数量下降,你想确定哪个指标出现问题。无论出现什么问题,找出导致问题的原因以及如何解决问题现在都是你的首要任务。下面我们就来谈谈最常用的数据分析图表及方法。
一、基本图表分析
1.对比分析
•预警分析
用预警色、图标集等方式对关键指标进行预警
•进度分析
展现目标完成情况的分析方法
• 差异分析
多个样本之间的差异程度
• 纵向对比(时间序列的趋势分析)
时间序列分析,同一指标不同时间下的对比
• 横向对比
部分与总体,部分与部分或是对象与对象之间的对比
•同环比分析
同比:本期值与同期值之间的对比
环比:本期值与上期值之间的对比
2.结构分析
•构成分析
反映同一指标或多种指标状态及数值变化情况的分析方法
• 杜邦分析
杜邦分析是一种广泛用于财务比率分析的模型,用于指定公司提高股本回报率(ROE)的分析方法。该模型将ROE比率分为三个部分:利润率,资产周转率和财务杠杆率,以确定每个组成部分的影响。
杜邦模型表示如下:
ROE =利润率×资产周转率×财务杠杆率
或者:
ROE =净收入/净销售额 × 净销售额/总资产 × 总资产/股东权益总额
•利润率 这个比率反映了公司从每一美元销售中获利的实力。
•资产周转率 该比率衡量公司使用其资产产生销售的效率。
•财务杠杆或股权乘数 该比率显示了公司使用债务融资的程度。比率值越大,预期ROE的风险越大且不确定。
杜邦分析的目标不是计算ROE,而是确定影响ROE的因素。如果投资者对目前的净资产收益率不满意,管理层可以分析导致其当前价值的问题,并尝试解决这些问题。
二、常见统计分析方法
1.相关性分析
相关性分析显示一个变量与另一个变量有何种相关关系。例如,它显示了计件工资是否会带来更高的生产率。
2.回归分析
回归分析是对一个变量值与另一个变量值间差异的定量预测。回归模拟因变量和解释变量之间的关系,这些变量通常绘制在散点图上。还能用回归线显示这些关系是强还是弱。
另外需要注意的是,散点图上的异常值非常重要。例如,外围数据点可能代表公司最关键的供应商或最畅销产品的输入。但是,回归线的性质通常会让你忽略这些异常值。
3.假设检验
假设检验是数理统计学中根据一定的假设条件,由样本推及总体的一种统计分析方法。主要是针对问题的需要对所研究的总体提出某种假设。通常,比较两个统计数据集,或者将通过采样获得的数据集与来自理想化模型的合成数据集进行比较。针对两个数据集之间的统计关系提出了一个假设,并将其作为替代方案进行比较理想化的零假设,提出两个数据集之间没有关系。
掌握了数据分析基本图表及分析方法后,CDA数据分析师认为有一点需要注意:“在用简单的语言表达你希望解决的问题之前,不要敲下第一行代码”。 简而言之,如果你无法用简单的语言解释你要解决的业务问题,那么任何数据分析都无法解决问题。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16