京公网安备 11010802034615号
经营许可证编号:京B2-20210330
老牌超级计算机厂商Cray在大数据分析领域又有大动作,其新推出的Cray Urika-XA系统预先集成了Hadoop和Spark开源框架,而Cray原有的用于图论发现的YarcData Urika设备已改名为Cray Urika-GD系统。
Urika-XA的问世意味着Cray能够同时向客户提供易用的大数据图论分析一体机(Appliance)以及支持各种高级分析应用的更加灵活开放的大数据开源平台,而且两个方案可以协同工作,也可以作为单独产品/方案使用,非常适合现阶段各行业有迫切大数据分析需求(例如金融、电信、媒体、体育、政府、生命科学/医药),同时又追求“快数据”分析性能、对未来大数据架构扩展性有较高要求的企业。正如IDC分析师所指出的:
Cray解决方案不仅将超级计算技术与Hadoop和Spark生态系统的性能结合在一起,还使企业将各种分析管道整合到同一平台。这是一个引人注目的产品,必将引起各大垂直市场上有高级分析需求的公司的兴趣。
以下为Cray Urika-XA新闻稿原文:
2014年10月16日,在2014 Strata + Hadoop World纽约大会上,全球领军超级计算机公司Cray(纳斯达克股票代码:CRAY)今天宣布推出新的大数据分析产品Cray® Urika-XA™ 系统。Cray® Urika-XA™ 系统预集成了Apache™ Hadoop® 和Apache Spark™ 框架,客户既可以享有分析设备立即可用的优势,同时又拥有灵活的开放平台,可以根据今后的分析工作负载进行改变。
Cray® Urika-XA™ 系统专为帮助客户应对任务关键型分析挑战而设计,将各种分析的不同需求整合在同一平台之上,降低了分析设备的体积和总体拥有成本。通过固态硬盘、并行文件系统、快速互连和独特的Cray Adaptive Runtime for Hadoop软件,以及针对计算密集及内存密集等应用优化的系统架构,性能足以满足对延迟敏感的实时分析应用。 Cray® Urika-XA™ 还凭借单点支持、基于标准的软件堆栈及符合行业标准,降低了系统管理的负荷。
“数据大爆炸为企业客户带来了挑战,他们必须知道如何从浩如烟海的数据中获取价值、如何选择理想的作业工具做出关键性的决定。”Cray公司总裁兼CEO Peter Ungaro表示,“大数据和高性能计算技术的融合,呼唤基于超级计算架构上的开放式分析系统,这种解决方案能使客户不仅享受先进分析技术的优势,更好地应对数据的复杂性,而且降低总体拥有成本,实现更快的价值转化结果。由于Cray® Urika-XA™是无技术锁定的分析系统, 在出厂前已经完成软硬件的安装、优化与集成测试,对于那些现有解决方案已无法满足其分析需求的不断增长的客户群,这一系统无疑是上乘之选。
在过去的几个月里, Cray® Urika-XA™ 系统已在商业运行环境和政府客户环境中进行测试。它的第一位客户是能源部橡树岭国家实验室(ORNL)。ORNL的研究人员和科学家将会把该系统应用于气象科学、材料科学和医疗保健领域的数据分析工作。
“Cray® Urika-XA™ 系统将被用于应对我们所面临要求更为苛刻的数据密集型挑战,如材料科学。我们的研究人员对此充满期待,”ORNL的数据系统架构师兼科学计算和数据环境主任Galen Shipman介绍道,“我们期待着与Cray公司携手努力,充分发挥Urika-XA平台的独特能力,共同解决这一问题和其它大数据挑战。”
Cray® Urika-XA™ 系统最多可在单个42U机架配置带固态硬盘的48个计算节点,包括Intel® Xeon®处理器,一个InfiniBand互连,以及Cray Sonexion® 存储系统。Urika-XA系统的软件堆栈,包括Apache Hadoop、Apache Spark,Cray Adaptive Runtime for Hadoop,以及Urika-XA管理系统。
“只有少数人愿意并且有能力尝试大数据的日子早已一去不复返了,各类机构纷纷试图在诸多关键任务流程中利用大数据技术和分析,” IDC商业分析和大数据项目副总裁Dan Vesset谈到,“Cray解决方案不仅将超级计算技术与Hadoop和Spark生态系统的性能结合在一起,还使企业将各种分析管道整合到同一平台。这是一个引人注目的产品,必将引起各大垂直市场上有高级分析需求的公司的兴趣。”
随着Cray Urika -XA系统的推出, Cray公司的产品组合中现在拥有了两个大数据分析解决方案。根据工作负荷的大小,两者既可协同工作又能独当一面。用于图论发现的YarcData Urika设备已改名为Cray® Urika-GD™ 系统。Cray公司目前为客户提供利用图论分析进行实时发现的大数据解决方案,以及支持Hadoop、Spark和范围广泛的分析应用的高级分析解决方案。
Cray Urika-XA系统是一个面向高性能大数据分析的预集成开放式平台。该平台既可使用预配置Hadoop和Spark框架,又可使用用户自行安装的分析工具,使各机构能够通过先进的分析功能,迅速洞察先机并捕捉商业价值。 Urika-XA平台的设计,旨在依托配备超过1500枚处理器核心的单一机架、38 TB高速SSD存储和InfiniBand互连的高密度集成系统,在最苛刻的分析工作负载条件下实现优越的性能。凭借其支持低延迟和批量分析的能力、易于管理、基于标准的设计,Urika-XA能以较低的总体拥有成本,为企业提供多用途且立即可用的分析环境。
Urika-GD系统是专门针对利用图论分析技术进行实时数据发现所设计的大数据分析设备。该设备有助于自动揭示各类数据集中的未知关系和非明显模式,无需预先建模、分区或提前知道所有的查询。Urika-GD设备包括针对图形论分析优化的硬件,可提供高达512 TB的全局共享内存;单一处理器具备128个硬件线程的多线程图论分析处理器 ;高度可扩展的I/O,数据输入/输出带宽高达每小时350 TB;和针对底层硬件优化的RDF/SPARQL数据库优化插件。立即可用并基于行业标准, Urika-CD使得现有的数据仓库或Hadoop集群功能更加完整,并很便捷地与现有分析和可视化工具集成。本文:CDA数据分析师培训官网
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
备考CDA的小伙伴,专属宠粉福利来啦! 不用拼运气抽奖,不用复杂操作,只要转发CDA真题海报到朋友圈集赞,就能免费抱走实用好礼 ...
2026-02-11在数据科学、机器学习实操中,Anaconda是必备工具——它集成了Python解释器、conda包管理器,能快速搭建独立的虚拟环境,便捷安 ...
2026-02-11在Tableau数据可视化实操中,多表连接是高频操作——无论是将“产品表”与“销量表”连接分析产品销量,还是将“用户表”与“消 ...
2026-02-11在CDA(Certified Data Analyst)数据分析师的实操体系中,统计基本概念是不可或缺的核心根基,更是连接原始数据与业务洞察的关 ...
2026-02-11在数字经济飞速发展的今天,数据已成为核心生产要素,渗透到企业运营、民生服务、科技研发等各个领域。从个人手机里的浏览记录、 ...
2026-02-10在数据分析、实验研究中,我们经常会遇到小样本配对数据的差异检验场景——比如同一组受试者用药前后的指标对比、配对分组的两组 ...
2026-02-10在结构化数据分析领域,透视分析(Pivot Analysis)是CDA(Certified Data Analyst)数据分析师最常用、最高效的核心实操方法之 ...
2026-02-10在SQL数据库实操中,字段类型的合理设置是保证数据运算、统计准确性的基础。日常开发或数据分析时,我们常会遇到这样的问题:数 ...
2026-02-09在日常办公数据分析中,Excel数据透视表是最常用的高效工具之一——它能快速对海量数据进行分类汇总、分组统计,将杂乱无章的数 ...
2026-02-09表结构数据作为结构化数据的核心载体,其“获取-加工-使用”全流程,是CDA(Certified Data Analyst)数据分析师开展专业工作的 ...
2026-02-09在互联网产品运营、用户增长的实战场景中,很多从业者都会陷入一个误区:盲目投入资源做推广、拉新,却忽视了“拉新后的用户激活 ...
2026-02-06在机器学习建模过程中,特征选择是决定模型性能的关键环节——面对动辄几十、上百个特征的数据(如用户画像的几十项维度、企业经 ...
2026-02-06在CDA(Certified Data Analyst)数据分析师的日常实操中,表格结构数据是贯穿全流程的核心载体,而对表格数据类型的精准识别、 ...
2026-02-06在日常办公数据分析中,我们经常会面对杂乱无章的批量数据——比如员工月度绩效、产品销售数据、客户消费金额、月度运营指标等。 ...
2026-02-05在分类模型(如风控反欺诈、医疗疾病诊断、客户流失预警)的实操落地中,ROC曲线是评估模型区分能力的核心工具,而阈值则是连接 ...
2026-02-05对CDA(Certified Data Analyst)数据分析师而言,数据分析的价值不仅在于挖掘数据背后的规律与洞察,更在于通过专业的报告呈现 ...
2026-02-05在数据分析实战中,我们经常会遇到“多指标冗余”的问题——比如分析企业经营状况时,需同时关注营收、利润、负债率、周转率等十 ...
2026-02-04在数据分析场景中,基准比是衡量指标表现、评估业务成效、对比个体/群体差异的核心工具,广泛应用于绩效评估、业务监控、竞品对 ...
2026-02-04业务数据分析是企业日常运营的核心支撑,其核心价值在于将零散的业务数据转化为可落地的业务洞察,破解运营痛点、优化业务流程、 ...
2026-02-04在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03