
很多人看到了大数据行业的火热,以及大数据分析工作者的可观薪资,都想转行去从事大数据分析领域的岗位,但是他们对于大数据行业的职位并不是很了解,我们在这篇文章中给大家介绍一下大数据分析领域的岗位的实际情况,希望这篇文章能够给想转行大数据的朋友带来帮助。
其实大数据行业就业领域很广,不管什么性质的公司,只要你想长期发展,都会有一个大数据岗位。大数据岗位有很多,我们在这篇文章中重点给大家讲一讲Hadoop开发工程师、数据分析师、数据挖掘工程师、大数据可视化工程师、大数据分析师。
首先说一说Hadoop开发工程师。Hadoop是一个分布式文件系统。Hadoop是一个能够对大量数据进行分布式处理的软件框架, 以一种可靠、高效、可伸缩的方式进行数据处理。如果接触大数据的话,肯定离不开Hadoop。
然后我们给大家说一下数据分析师。数据分析师是数据师的一种,指的是不同行业中,专门从事行业数据搜集、整理、分析,并依据数据做出行业研究、评估和预测的专业人员。在工作中通过运用工具,提取、分析、呈现数据,实现数据的商业意义。数据分析师其实也是一个非常热门的职业,是一个非常高大上的职业。但是如果想成为一名数据分析师,至少需要熟练SPSS、STATISTIC、Eviews、SAS等数据分析软件中的一门。这样才能够做好数据分析工作。
接着给大家说一下数据挖掘工程师。做数据挖掘要从海量数据中发现规律,这就需要一定的数学知识,最基本的比如线性代数、高等代数、概率论等知识。数据挖掘工程师经常会用到的语言包括Python、Java、C或者C++,有些人用Python比较多。有时用MapReduce写程序,再用Hadoop或者Hyp来处理数据,如果用Python的话会和Spark相结合。这样才能够成为一个合格的数据挖掘工程师。
然后给大家说一下大数据可视化工程师。就目前而言,随着大数据在人们工作及日常生活中的应用,大数据可视化也改变着人类的对信息的阅读和理解方式。大数据可视化工程师都是幕后工作者,大数据的展现离不开他们。
最后就是大数据分析师了,说白了,大数据分析师就是集Hadoop开发工程师和数据分析师、数据挖掘工程师为一体大才能人才。如果这些都掌握的话,并且有一定的经验,那么待遇就不用担心。
我们在这篇文章中给大家介绍了五个大数据分析行业的职位,想必大家看了这篇文章之后对大数据行业的各个职业有了一定的了解了吧,希望各位朋友可以从自身因素和大环境出发,既要认清自己的能力和兴趣所在,也要看看自己当前所处城市对于大数据分析人才的需求,然后再做出更明智的决定。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01