
现在很多人都想进入高薪岗位,这是人之常情。现如今由于大数据和数据分析的流行使得Python变得十分火爆,正所谓哪里有需求,哪里就有高薪。所以如果我们想进入数据分析行业就必须学习Python。下面我们就给大家解答一下学习Python的原因。
就目前而言,在市场上,Python技能需求增速达到将近两倍,在人才需求升级的同时,互联网公司对人才技能的要求也在逐渐提高。以数据分析师为例,2015年,超过40%的职位技能要求中只提到了SQL或HIVE,而到2018年,这一比例已降至三成以下,半数岗位要求候 选人还须掌握通用编程技能,比如Python、Java,数据挖掘技能,比如R语言,SAS,以及数据可视化等技能,其他岗位技能要求也普遍较过去更为严格。从分布上看,新兴技能占比提高显著。Python由于语法简洁,功能强大,且在人工智能、大数据方面展现出效率优势,越来越受到欢迎。从数据显示中我们发现Python技能需求增速达到174%,居于首位,Spark、Hadoop等大数据技能需求增幅也十分靠前。
其次就是信息安全领域需求占比最高的技术职位,在最近的几年里,信息安全领域尤其值得关注。尽管因企业数量不占优势,人才需求占比不高,但需求增幅超过60%,其中技术人才需求占比多达46.5%,高出互联网均值超过20个百分点。从人才需求大数据中,我们还发现,信息安全领域的技术人才需求中,机器学习、自然语言处理、深度学习等AI相关人才占比已达1.3%,体量虽不大,但却向我们传递了一个信息,信息安全行业正在向更高端、更高效、更智能的方向发展。而信息安全领域也是需要学习Python的,对Python的需求也是十分高的。
最后就是复合型人才竞争力碾压优势愈发明显,在互联网行业求职人才中,有26%的人掌握至少3种技能,更多的非技术人才开始掌握技术型技能。增长最快的五大技能分别是SQL、Python、Java、Tableau和Hive。从竞争力上看,多重技能人才也比以往更加吃香。
以技术职位为例,虽然不少企业在职位要求中只写了一项编程能力,但过半数公司在寻找人才时偏爱掌握多门编程语言的求职者,多重技能人才相对来说是比较好找工作的。而Python是其中比较容易上手的技能。在这篇文章中我们给大家介绍了我们为什么要学习Python的原因,具体来说就是市场需求量是十分大的,所以我们要学好Python。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17在数据汇总分析中,透视表凭借灵活的字段重组能力成为核心工具,但原始透视表仅能呈现数值结果,缺乏对数据背景、异常原因或业务 ...
2025-10-17在企业管理中,“凭经验定策略” 的传统模式正逐渐失效 —— 金融机构靠 “研究员主观判断” 选股可能错失收益,电商靠 “运营拍 ...
2025-10-17在数据库日常操作中,INSERT INTO SELECT是实现 “批量数据迁移” 的核心 SQL 语句 —— 它能直接将一个表(或查询结果集)的数 ...
2025-10-16在机器学习建模中,“参数” 是决定模型效果的关键变量 —— 无论是线性回归的系数、随机森林的树深度,还是神经网络的权重,这 ...
2025-10-16在数字化浪潮中,“数据” 已从 “辅助决策的工具” 升级为 “驱动业务的核心资产”—— 电商平台靠用户行为数据优化推荐算法, ...
2025-10-16在大模型从实验室走向生产环境的过程中,“稳定性” 是决定其能否实用的关键 —— 一个在单轮测试中表现优异的模型,若在高并发 ...
2025-10-15