
科技在发展,时代在进步,现如今,我们生活的时代是互联网的时代,而云计算的出现,让我们又慢慢的进入到大数据的时代。大数据这个行业工资较高,发展前景更好,因此很多年轻人争相加入到这个行业中,而数据分析师就是其中一个岗位,那么这个岗位的就业前景如何呢?
在了解这个岗位就业前景如何之前,我们首先要了解什么是数据分析师。所谓数据分析师就是指的不同行业中,专门从事行业的数据搜集与处理,分析这些数据,并从中对行业做出研究、评估和预测的专业人员。从这里我们不难看到,数据分析师的就业面是非常广泛的,可以这么说,凡事涉及到数据的行业,都会需要数据分析师。那么作为一名数据分析师,我们的职业生涯应该怎么规划呢?
首先大家需要明白的一点,数据分析师的手里拥有一座非常庞大的宝藏——视野。数据分析并不是一个简单的技术工种,它是非常具有潜力的一项工作,在这项工作的背后,蕴含着丰富的机遇和机会。滴滴出行数据分析团队的负责人——刘普,多年来曾在多个公司任职,在这期间,他从一个普通的数据分析师,成长为现在的精通技术和业务的数据专家,他认为,数据分析师在不同阶段需要掌握不同的能力和技能,但这些本质上都是为了让我们的视野更加开阔。此外,刘普还认为,数据分析师在进阶的道路上有多种选择,可以成为数据技能超强的产品经理,也可以成为数据指导业务的运营VP,更可以进入到管理或者战略层,而这些,都是我们在工作的过程中,开阔视野所带给我们的。
笔者认为,数据分析师的职业规划主要可以表现在两个方面:一个方向是运营方向:我们在这个行业工作一段时间,对这个行业有了充分的了解,我们就可以转向运营层面,从宏观的角度对这个行业进行调度和支配;另一个方向就是数据挖掘分析方向:这个方向更偏理科一点,我们需要做的就是在前期阶段,不断的提升自己的技能和专业程度,进而成长为一个能够对数据进行挖掘并分析的高级工程师;无论哪个方向,未来的发展前景都是美好的。
总的来说,数据分析师是一个发展前景非常好的工作,时代的发展决定了在未来,数据分析师将成为必不可少的一个工作岗位,如果大家能够有幸进入到这个行业,那么就好好珍惜,而对于那些还没考虑未来就业方向的朋友来说,数据分析师绝对是一个不错的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01