
对于人工智能很多人都是不陌生的,现在我们的生活中也有很多的人工智能产品。人工智能的概念于1956年提出,经过几十年的长足发展,现在的人工智能已经在慢慢地进行普及,而越来越多的人也开始加入到人工智能的行业,但想入行并不容易,学习人工智能的相关知识是非常有必要的。而具备一定的数学基础,对于学习人工智能来说更是非常重要,因为数学的基础知识蕴含着人工智能问题的基本思想和方法,也是理解复杂算法的必备要素,那么我们应该具备哪些数学基础呢?
人工智能需要具备的数学基础有很多,主要包括线性代数、概率论、形式逻辑、数理统计等,本文就为大家一一介绍一下这些学科及其用处。
(1)线性代数;基本上所有的理科生和部分文科生在大学期间都会学习这么课程,它不仅仅是人工智能的基础,还是很多其它以现代数学为主要分析方法的众多科学的基础。线性代数的本质是将具体的事物抽象为数学对象,并描述其静态或动态特性,在人工智能领域,计算机处理生活中的事物采用的就是将具体抽象化的方法,因此线性代数非常重要。
(2)概率论;如果说线性代数着重于将具体事物抽象化,那么概率论所着重的点就是生活中无所不在的可能性。在人工智能领域,概率论通过对生活中的可能性进行建模分析处理,进而做出判断或操作,由此可见,概率论的重要性丝毫不亚于线性代数。
(3)形式逻辑;在人工智能概念最初提出的时候,这一理论的各位奠基者认为,理想的人工智能应该是具有抽象意义的学习、推理和归纳的能力,这就需要一个认知的过程,如果我们将认知的过程定义为对符号的逻辑运算,那么形式逻辑就是人工智能的基础,因为对于人工智能来说,认知的本质是计算。
(4)数理统计;虽说数理统计是以概率论为基础的,但其和概率论有着本质上的不同,数理统计着重研究的对象是未知分布的随机变量,你可以这样理解,那就是数理统计是逆向的概率论。对于人工智能来说,能够对未知分布的随机变量进行研究分析,才是最重要的。
以上就是笔者为大家介绍的入行人工智能所需要我们具备的数学基础,其实并不完全,因为人工智能行业所涵盖的内容实在太多,文章中只是为大家就一些典型内容进行介绍,如果大家对于人工智能感兴趣,可以深入地探讨一下。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02