
我们在上一篇文章中给大家讲了数据分析的步骤,同时提到了经典的AARRR模型和漏斗模型,这两个模型都是大家需要掌握的,想要做好数据分析这份工作真的要循序渐进且步步为营,不能跳跃忽略,更不能急于求成。今天小编就来给大家好好讲一讲数据分析中的AARRR模型。
什么是AARRR模型?AARRR模型的内容是什么呢?也就是获取、活跃、留存、收益、传播。[就是这些Acquisition(获取)、Activation(活跃)、Retention(留存)、Revenue(收益)、Refer(传播)].下面给大家详细介绍一下每一个内容。
首先说说获取用户。很多人都不是很清楚如何获取用户?一般来说,线上通过网站通过SEO,SEM,app通过市场首发、ASO等方式获取。还有运营活动的H5页面,自媒体等方式。线下通过推广和传单进行获取用户。由此看来获取用户是比较麻烦的。
其次说说提高活跃度。当我们获取了用户以后,就需要通过运营价格优惠、编辑内容等方式进行提高活跃度。把内容做好且多,商品做好且多,价格做到优惠,但需要控制在成本至上的有生长空间。这样的用户是最有价值进行活跃。产品策略上,除了提供运营模块和内容深化。进行产品会员激励机制成长体制进行活跃用户,这样才能够做好提高活跃度这个工作。
然后说说提高留存率。当我们在提高活跃度以后,我们就会积累了一批忠实的用户,这些用户就开始慢慢沉淀下来了。不管是在运营上,还是在采用内容上,需要相互留言等社区用户从而获得反馈,这样电商通过商品质量,通过优质服务提高留存。这些都是业务层面的提高留存。产品模式上,通过会员机制的签到和奖励的机制去提高留存。通过日留存率、周留存率、月留存率等指标监控应用的用户流失情况,并采取相应的手段在用户流失之前,激励这些用户继续使用应用。
接着说说获取收入。我们可以看出获取收入其实是应用运营最核心的一块。不管是免费应用,也应该有其盈利的模式。收入来源主要有三种:付费应用、应用内付费、以及广告。但是在国内的情况来说,很多人不能够接受付费应用。在国内,广告是大部分开发者的收入来源,前面所提的提高活跃度、提高留存率,对获取收入来说,是必需的基础。用户基数大了,收入才有可能上量。
最后就是自传播。以前的运营模型到第四个层次就结束了,但是社交网络的兴起,使得运营增加了一个方面,自传播这已经成为获取用户的一个新途径。这个方式的成本很低,而且效果有可能非常好。所以现在广受重视。
由此可见,AARRR模型确实是一个经典的数据分析模型,大家在学习数据分析的时候一定要多多积累知识,这样才能够做好数据分析的工作,希望这篇文章能能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01