
在上一篇文章中,我们为大家介绍了很多数据分析师需要掌握的图标技能,比如比重图、表格、趋势图、频数图等等。这些图表都是比较简单的,但是简单的大家通过学习都能够掌握,这样就没有了核心竞争力,并且,初级的图表能够满足简单的业务要求,但是对复杂的情况是不能够应对的,所以在这里教大家如何深入的学习数据分析师需要掌握的图表技能。
首先,如果想深入的了解数据分析师需要掌握的图表技能,需要掌握好三种图,这三种图就是漏斗图、留存图和热力图。
首先给大家说说漏斗图,漏斗图的作用是什么呢?漏斗图漏斗图主要用于转化过程,漏斗图就是分析用户在不同阶段的转化或者流失情况。然后说说留存图,举一个简单的例子,就是留存是指用户首次访问你的网站,多少天后又重新回访的情况。利用留存曲线可以对留存进行深入分析。最后说说热力图,热力图就是显示的是用户在你产品页面上的点击、停留偏好。借助热图产品经理可以优化产品页面布局,运营可以优化内容,很多人都说热力图确实是一个好工具。
学会了这些图,还需要对数据进行驱动处理。就目前而言,随着数据可视化技术的不断发展,图表的类型越来越丰富。但是图表数据分析的本质不会变,其最终目还是要辅助人们的决策。由于人们的工作在不断细分,需要分析和决策的内容也不太一样。同样都是市场部门的同事,负责内容营销的需要关注的数据差异很大,而这就需要搭建属于自己的数据看板。当然,用图表做好数据分析并非易事,它绝非一朝一日之功,但也并不是无规律可循。这就对业务的理解,能洞察数字背后的商业意义。其次是灵活选择维度拆分指标,在图表坐标系中以合适的形式进行可视化展示。最后一定要从图表数据分析中发现问题,并指导业务决策。在这样不断反复的过程中,不断优化我们的图表数据分析过程,用数据来驱动业务增长。
以上的内容就是小编对数据分析的图表的知识的详细内容了,希望这篇文章能够给大家带来帮助,大家在学习数据分析中的图表技能的时候一定要注意好上面提到的内容,这样才能够做好数据可视化工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Pandas 选取特定值所在行:6 类核心方法与实战指南 在使用 pandas 处理结构化数据时,“选取特定值所在的行” 是最高频的操作之 ...
2025-09-30球面卷积神经网络(SCNN) 为解决这一痛点,球面卷积神经网络(Spherical Convolutional Neural Network, SCNN) 应运而生。它通 ...
2025-09-30在企业日常运营中,“未来会怎样” 是决策者最关心的问题 —— 电商平台想知道 “下月销量能否达标”,金融机构想预判 “下周股 ...
2025-09-30Excel 能做聚类分析吗?基础方法、进阶技巧与场景边界 在数据分析领域,聚类分析是 “无监督学习” 的核心技术 —— 无需预设分 ...
2025-09-29XGBoost 决策树:原理、优化与工业级实战指南 在机器学习领域,决策树因 “可解释性强、处理非线性关系能力突出” 成为基础模型 ...
2025-09-29在标签体系的落地链路中,“设计标签逻辑” 只是第一步,真正让标签从 “纸上定义” 变为 “业务可用资产” 的关键,在于标签加 ...
2025-09-29在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23