京公网安备 11010802034615号
经营许可证编号:京B2-20210330
作者 | Jeremie Harris
翻译 | Mika
本文为 CDA 数据分析师原创作品,转载需授权
在大学我学习物理时,每当遇到不理解的术语,我就会上网搜索,这时我常会用到的就是维基百科。
虽然维基百科很好用,但是上面很多文章都不适合我的水平。那些文章要不就是超出我的理解,或者对我来说太简单了。这种情况时常发生,因此我从中总结的经验就是,维基百科上的技术词条很难既提供有效信息,又做到易于理解。
很多数据科学方面的职业建议也是如此,有些是针对完全零基础的初学者;有些是针对初级数据科学家磨练技能;有些则针对资深的软件工程师。而这容易让许多想成为数据科学家的人群感到无从下手,他们不知道该如何花在哪里。
在本文中,我打算针对三种不同类型的人群给出相应的职业转型建议。
第一类:零基础的初学者
如果你刚刚进入数据科学领域,请记住该领域的发展速度非常快,也许现在我给出的建议在你准备求职时已经过时了。如今数据科学的招聘标准与一两年后的标准之间的差距可能会更大。
在明确这点的基础上,如果你想进入数据科学领域,并且没有任何编程方面的背景,我要给出的建议如下:
首先要保持开放的心态
如果你是一名初学者,那么你可能完全不知道数据科学的具体内涵。那么可以先和一些数据科学家聊一聊;关注相关的科学播客。成为一名数据科学家需要花费大量的时间和精力,因此只因为你认为自动驾驶汽车很酷就一头扎进去,这并不是一个很好的理由。确保自己了解数据科学中不那么高大上的部分,数据处理和构建数据管道等,这些方面占数据科学家日常工作的大部分。
如果你决定继续前进,这太好了!首先你要做的第一件事就是学习Python。参加一些在线课程,并尽快建立一个基础项目。当你掌握一定Python技能时,学习如何使用Jupyter notebook。
在找工作时,一开始就从全面的数据科学职位并不是最好的。相反,可以选择数据可视化或数据分析职位,这类职位市场需求量大,而且要求没有数据科学家那么高。这些职位经常与数据科学家一起工作,当你获得了一些经验后,也可以着手向这个方向发展。
如何发挥自己的优势:
当你准备好找工作时,你会发现学会推销自己在在数据科学中非常重要。你可能会担心,因为你没有任何专业经验或计算机科学的研究生学位,推广自己是一个难题。但这也可以成为你最大的优势:你是从零开始,自学成才的数据科学家,公司需要这些努力而且学习能力强的数据科学家。为此你需要符合自己的这种形象,不断提高技能,解决一个个挑战,但当中的回报绝对是值得的。
第二类:软件工程师
我遇到的想成为数据科学家的人中,可能有20%都是软件工程师。一方面,有将代码部署到生产和与开发团队合作的相关经验,这是非常重要的资产。另一方面,如今对全栈开发人员的需求非常高,有时公司会将软件工程师归为这个方向。因此想转为数据科学家时,你要避免被当作软件工程师,而不是数据科学家。
其他建议:
首先你可以考虑转为专注后端或数据库相关方向。熟悉数据管道是一个良好的开端,这可以帮助你构建核心数据操作技能组。
机器学习工程可能是最接近数据科学的职位,这更容易过渡。在求职时,你可以找哪些强调部署模型,或将其集成到现有应用程序的职位,这些职位将最有效地利用你现有的技能。
你很可能要建立机器学习或数据科学项目来打动雇主。利用你的软件工程技能,将这些技能整合到可以向招聘人员展示的应用程序中。这特别有效,因为这更为明确,而且突显了你作为全栈数据科学家的潜力。
要记住,在职业转型时你的薪资很可能会减少。即使是高级软件工程师,当他们转行数据科学时,也需要从初级的职位开始。
如何发挥自己的优势:
最好的方法就是利用你在软件开发方面的经验。你已经知道如何编写干净、文档记录良好的代码,以及该如何与他人协作,这是大多数初级职位求职者所缺乏的优势。
第三类:计算机科学、数学或物理专业的应届毕业生
如果你是一名本科、硕士或博士生,你可能在统计学和数学方面有很好的基础。但你可能从未申请过科技方面的工作,而且你不确定如何准备面试。此外,假设你读书时一直在编程,你很可能无法写出干净、结构良好的代码。
几点建议:
你在读书期间学的R语言还不够。如果你是学物理的,那你的MATLAB或数学技能也是不够的,去学学Python吧。
这些内容你需要尽快学习:协作版本控制,比如如何与其他人一起使用GitHub);容器化,比如如何使用Docker;开发运营,学习如何使用AWS或其他类似服务在云中部署模型;SQL也是必须的。
学习Python中的测试驱动开发。学习如何使用文档字符串,如何将代码模块化,以及如何使用Jupyter notebook。
如果你在以数学为导向的领域,那么深度学习是一个很好的探索方向。要注意先从更传统的“scikit-learn”型数据科学职位开始,然后转向深度学习更容易。对你来说,最重要的是先入行,并尽快开始生产代码。
如何发挥自己的优势:
如果你是数学或物理专业,你最好的策略就是发挥有深厚理论知识的特定。为此,你需要能够自信地解释各种模型的原理,熟悉文献中最新的文章。
结语
注意:我这里提供的建议并不能完全使用与所有情况。有些软件工程师可能要学习的更多,而有些初学者有很好的数学基础,更适合成为深度学习研究人员。但希望本文能你一个不错的起点。
最后,无论你是软件工程师,刚毕业的大学生,还是零基础的初学者,你都要问自己一个关键的问题:哪种职业发展轨迹最接近你的情况?很多情况下,通过称为数据分析师或数据可视化专家进入该领域都是不错的选择。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python开发中,HTTP请求是与外部服务交互的核心场景——调用第三方API、对接微服务、爬取数据等都离不开它。虽然requests库已 ...
2025-12-12在数据驱动决策中,“数据波动大不大”是高频问题——零售店长关心日销售额是否稳定,工厂管理者关注产品尺寸偏差是否可控,基金 ...
2025-12-12在CDA(Certified Data Analyst)数据分析师的能力矩阵中,数据查询语言(SQL)是贯穿工作全流程的“核心工具”。无论是从数据库 ...
2025-12-12很多小伙伴都在问CDA考试的问题,以下是结合 2025 年最新政策与行业动态更新的 CDA 数据分析师认证考试 Q&A,覆盖考试内容、报考 ...
2025-12-11在Excel数据可视化中,柱形图因直观展示数据差异的优势被广泛使用,而背景色设置绝非简单的“换颜色”——合理的背景色能突出核 ...
2025-12-11在科研实验、商业分析或医学研究中,我们常需要判断“两组数据的差异是真实存在,还是偶然波动”——比如“新降压药的效果是否优 ...
2025-12-11在CDA(Certified Data Analyst)数据分析师的工作体系中,数据库就像“数据仓库的核心骨架”——所有业务数据的存储、组织与提 ...
2025-12-11在神经网络模型搭建中,“最后一层是否添加激活函数”是新手常困惑的关键问题——有人照搬中间层的ReLU激活,导致回归任务输出异 ...
2025-12-05在机器学习落地过程中,“模型准确率高但不可解释”“面对数据噪声就失效”是两大核心痛点——金融风控模型若无法解释决策依据, ...
2025-12-05在CDA(Certified Data Analyst)数据分析师的能力模型中,“指标计算”是基础技能,而“指标体系搭建”则是区分新手与资深分析 ...
2025-12-05在回归分析的结果解读中,R方(决定系数)是衡量模型拟合效果的核心指标——它代表因变量的变异中能被自变量解释的比例,取值通 ...
2025-12-04在城市规划、物流配送、文旅分析等场景中,经纬度热力图是解读空间数据的核心工具——它能将零散的GPS坐标(如外卖订单地址、景 ...
2025-12-04在CDA(Certified Data Analyst)数据分析师的指标体系中,“通用指标”与“场景指标”并非相互割裂的两个部分,而是支撑业务分 ...
2025-12-04每到“双十一”,电商平台的销售额会迎来爆发式增长;每逢冬季,北方的天然气消耗量会显著上升;每月的10号左右,工资发放会带动 ...
2025-12-03随着数字化转型的深入,企业面临的数据量呈指数级增长——电商的用户行为日志、物联网的传感器数据、社交平台的图文视频等,这些 ...
2025-12-03在CDA(Certified Data Analyst)数据分析师的工作体系中,“指标”是贯穿始终的核心载体——从“销售额环比增长15%”的业务结论 ...
2025-12-03在神经网络训练中,损失函数的数值变化常被视为模型训练效果的“核心仪表盘”——初学者盯着屏幕上不断下降的损失值满心欢喜,却 ...
2025-12-02在CDA(Certified Data Analyst)数据分析师的日常工作中,“用部分数据推断整体情况”是高频需求——从10万条订单样本中判断全 ...
2025-12-02在数据预处理的纲量统一环节,标准化是消除量纲影响的核心手段——它将不同量级的特征(如“用户年龄”“消费金额”)转化为同一 ...
2025-12-02在数据驱动决策成为企业核心竞争力的今天,A/B测试已从“可选优化工具”升级为“必选验证体系”。它通过控制变量法构建“平行实 ...
2025-12-01