京公网安备 11010802034615号
经营许可证编号:京B2-20210330
对于数据分析行业很多人不是很了解,人们只是听到了数据分析这个行业前景和薪资不错,但是对于数据分析行业并不是很清楚,尤其是对于数据分析师所需要的技能不是很了解,一般来说,数据分析行业需要懂业务、懂管理以及懂分析即可。但是要想成为数据科学家就没那么简单了,数据科学家还需要学会计算机科学、数学、统计学、数据挖掘、数据可视化、计算机编码能力等等技能,而数据工程师需要学习的知识也是比较多的,下面就给大家介绍一下具体的内容。
首先,如果成为一个优秀的数据分析师,那么你就必须要懂得业务。什么是懂的业务,就是熟悉自己的行业知识。知道自己的公司业务以及工作流程,如果这些都不知道,那么分析的数据的准确性就很容易被别人质疑。其次就是懂得管理。什么是懂管理呢?懂管理就是搭建数据分析框架的要求,以及针对数据分析结论提出有指导意义的分析建议。懂得管理是一个数据分析师必备的素质。最后也是最重要的就是懂得分析,懂得分析就是指掌握数据分析基本原理与一些有效的方法进行数据分析,这样通过分析得出一个重要的结果。
那么数据科学家所需的技能是什么呢?数据科学家首先需要学习计算机科学,一般来说,数据科学家大多要求具备编程、计算机科学相关的专业背景。学习了计算机科学等知识就需要学会数学、统计、数据挖掘等知识。其中,面向统计分析的开源编程语言及其运行环境r语言最近备受瞩目。r语言的强项不仅在于其包含了丰富的统计分析库,而且具备将结果进行可视化的高品质图表生成功能,并可以通过简单的命令来运行。处理上面需要的知识外,数据分析师还需要重视数据可视化的知识。这是因为信息的质量很大程度上依赖于其表达方式。对数字罗列所组成的数据中所包含的意义进行分析,需要使用一系列工具从而使分析结果可视化,这是对于数据科学家来说十分重要的技能之一。
介于数据分析师和数据科学家的职业是数据工程师,那么数据工程师需要学习什么知识呢?一般需要学习数学及统计学相关的知识。只有具备一定的理论知识,才能理解模型、复用模型甚至创新模型,来解决实际问题。当然还需要学习计算机编码能力。实际开发能力和大规模的数据处理能力是作为大数据工程师的一些必备要素,因为许多数据的价值来自于挖掘的过程,大家必须要自己动手去做出数据处理。最后也是需要学习不同行业的知识。数据工程师这个角色很重要的一点是,不能脱离市场,因为大数据只有和特定领域的应用结合起来才能产生价值。
以上的内容就是数据分析行业各个阶段的所需要的技能的具体内容了。如果你想要成为一名优秀的数据分析师,要懂业务、还有就是具有编程、计算机科学相关的专业背景;当然还要具有计算机编码能力。希望以上的内容可以对您有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
当沃尔玛数据分析师首次发现 “啤酒与尿布” 的高频共现规律时,他们揭开了数据挖掘最迷人的面纱 —— 那些隐藏在消费行为背后 ...
2025-11-03这个问题精准切中了配对样本统计检验的核心差异点,理解二者区别是避免统计方法误用的关键。核心结论是:stats.ttest_rel(配对 ...
2025-11-03在 CDA(Certified Data Analyst)数据分析师的工作中,“高维数据的潜在规律挖掘” 是进阶需求 —— 例如用户行为包含 “浏览次 ...
2025-11-03在 MySQL 数据查询中,“按顺序计数” 是高频需求 —— 例如 “统计近 7 天每日订单量”“按用户 ID 顺序展示消费记录”“按产品 ...
2025-10-31在数据分析中,“累计百分比” 是衡量 “部分与整体关系” 的核心指标 —— 它通过 “逐步累加的占比”,直观呈现数据的分布特征 ...
2025-10-31在 CDA(Certified Data Analyst)数据分析师的工作中,“二分类预测” 是高频需求 —— 例如 “预测用户是否会流失”“判断客户 ...
2025-10-31在 MySQL 实际应用中,“频繁写入同一表” 是常见场景 —— 如实时日志存储(用户操作日志、系统运行日志)、高频交易记录(支付 ...
2025-10-30为帮助教育工作者、研究者科学分析 “班级规模” 与 “平均成绩” 的关联关系,我将从相关系数的核心定义与类型切入,详解 “数 ...
2025-10-30对 CDA(Certified Data Analyst)数据分析师而言,“相关系数” 不是简单的数字计算,而是 “从业务问题出发,量化变量间关联强 ...
2025-10-30在构建前向神经网络(Feedforward Neural Network,简称 FNN)时,“隐藏层数目设多少?每个隐藏层该放多少个神经元?” 是每个 ...
2025-10-29这个问题切中了 Excel 用户的常见困惑 —— 将 “数据可视化工具” 与 “数据挖掘算法” 的功能边界混淆。核心结论是:Excel 透 ...
2025-10-29在 CDA(Certified Data Analyst)数据分析师的工作中,“多组数据差异验证” 是高频需求 —— 例如 “3 家门店的销售额是否有显 ...
2025-10-29在数据分析中,“正态分布” 是许多统计方法(如 t 检验、方差分析、线性回归)的核心假设 —— 数据符合正态分布时,统计检验的 ...
2025-10-28箱线图(Box Plot)作为展示数据分布的核心统计图表,能直观呈现数据的中位数、四分位数、离散程度与异常值,是质量控制、实验分 ...
2025-10-28在 CDA(Certified Data Analyst)数据分析师的工作中,“分类变量关联分析” 是高频需求 —— 例如 “用户性别是否影响支付方式 ...
2025-10-28在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24