
对于数据分析行业很多人不是很了解,人们只是听到了数据分析这个行业前景和薪资不错,但是对于数据分析行业并不是很清楚,尤其是对于数据分析师所需要的技能不是很了解,一般来说,数据分析行业需要懂业务、懂管理以及懂分析即可。但是要想成为数据科学家就没那么简单了,数据科学家还需要学会计算机科学、数学、统计学、数据挖掘、数据可视化、计算机编码能力等等技能,而数据工程师需要学习的知识也是比较多的,下面就给大家介绍一下具体的内容。
首先,如果成为一个优秀的数据分析师,那么你就必须要懂得业务。什么是懂的业务,就是熟悉自己的行业知识。知道自己的公司业务以及工作流程,如果这些都不知道,那么分析的数据的准确性就很容易被别人质疑。其次就是懂得管理。什么是懂管理呢?懂管理就是搭建数据分析框架的要求,以及针对数据分析结论提出有指导意义的分析建议。懂得管理是一个数据分析师必备的素质。最后也是最重要的就是懂得分析,懂得分析就是指掌握数据分析基本原理与一些有效的方法进行数据分析,这样通过分析得出一个重要的结果。
那么数据科学家所需的技能是什么呢?数据科学家首先需要学习计算机科学,一般来说,数据科学家大多要求具备编程、计算机科学相关的专业背景。学习了计算机科学等知识就需要学会数学、统计、数据挖掘等知识。其中,面向统计分析的开源编程语言及其运行环境r语言最近备受瞩目。r语言的强项不仅在于其包含了丰富的统计分析库,而且具备将结果进行可视化的高品质图表生成功能,并可以通过简单的命令来运行。处理上面需要的知识外,数据分析师还需要重视数据可视化的知识。这是因为信息的质量很大程度上依赖于其表达方式。对数字罗列所组成的数据中所包含的意义进行分析,需要使用一系列工具从而使分析结果可视化,这是对于数据科学家来说十分重要的技能之一。
介于数据分析师和数据科学家的职业是数据工程师,那么数据工程师需要学习什么知识呢?一般需要学习数学及统计学相关的知识。只有具备一定的理论知识,才能理解模型、复用模型甚至创新模型,来解决实际问题。当然还需要学习计算机编码能力。实际开发能力和大规模的数据处理能力是作为大数据工程师的一些必备要素,因为许多数据的价值来自于挖掘的过程,大家必须要自己动手去做出数据处理。最后也是需要学习不同行业的知识。数据工程师这个角色很重要的一点是,不能脱离市场,因为大数据只有和特定领域的应用结合起来才能产生价值。
以上的内容就是数据分析行业各个阶段的所需要的技能的具体内容了。如果你想要成为一名优秀的数据分析师,要懂业务、还有就是具有编程、计算机科学相关的专业背景;当然还要具有计算机编码能力。希望以上的内容可以对您有所帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
SQL Server 中 CONVERT 函数的日期转换:从基础用法到实战优化 在 SQL Server 的数据处理中,日期格式转换是高频需求 —— 无论 ...
2025-09-18MySQL 大表拆分与关联查询效率:打破 “拆分必慢” 的认知误区 在 MySQL 数据库管理中,“大表” 始终是性能优化绕不开的话题。 ...
2025-09-18CDA 数据分析师:表结构数据 “获取 - 加工 - 使用” 全流程的赋能者 表结构数据(如数据库表、Excel 表、CSV 文件)是企业数字 ...
2025-09-18DSGE 模型中的 Et:理性预期算子的内涵、作用与应用解析 动态随机一般均衡(Dynamic Stochastic General Equilibrium, DSGE)模 ...
2025-09-17Python 提取 TIF 中地名的完整指南 一、先明确:TIF 中的地名有哪两种存在形式? 在开始提取前,需先判断 TIF 文件的类型 —— ...
2025-09-17CDA 数据分析师:解锁表结构数据特征价值的专业核心 表结构数据(以 “行 - 列” 规范存储的结构化数据,如数据库表、Excel 表、 ...
2025-09-17Excel 导入数据含缺失值?详解 dropna 函数的功能与实战应用 在用 Python(如 pandas 库)处理 Excel 数据时,“缺失值” 是高频 ...
2025-09-16深入解析卡方检验与 t 检验:差异、适用场景与实践应用 在数据分析与统计学领域,假设检验是验证研究假设、判断数据差异是否 “ ...
2025-09-16CDA 数据分析师:掌控表格结构数据全功能周期的专业操盘手 表格结构数据(以 “行 - 列” 存储的结构化数据,如 Excel 表、数据 ...
2025-09-16MySQL 执行计划中 rows 数量的准确性解析:原理、影响因素与优化 在 MySQL SQL 调优中,EXPLAIN执行计划是核心工具,而其中的row ...
2025-09-15解析 Python 中 Response 对象的 text 与 content:区别、场景与实践指南 在 Python 进行 HTTP 网络请求开发时(如使用requests ...
2025-09-15CDA 数据分析师:激活表格结构数据价值的核心操盘手 表格结构数据(如 Excel 表格、数据库表)是企业最基础、最核心的数据形态 ...
2025-09-15Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10