
就目前而言,人们通过网络了解数据分析已经知道了数据分析的好处了大数据的好处就是数据分析的使用能够为企业的决策和未来提供发展方向。很多人看到了这一点就开始研究数据分析,而数据分析师需要一定的步骤,那么大家知道不知道数据分析的步骤是什么呢?一般来说,数据分析有4个过程,这4个过程就是设计数据分析方案、数据挖掘、数据处理及呈现和数据分析。
首先给大家说一下数据分析中的设计数据分析方案,在数据分析之前,我们一定要定一个数据设计方案,有一个明确的目的以及内容,才能够在数据分析是的时候具有方向性。如果没有目标,那么分析的数据就显得杂乱无章。很可能把别人带进坑了,这样做不但会浪费时间,而且对公司没有一点好处。当数据分析的目的明确以后,我们可以把要分析的东西分解成小的任务,只有明确了数据分析的目的以后才能够确定分析内容,我们把小任务明确出来,这样才能够为后续的数据挖掘、数据分析、数据处理及数据呈现做好准备。同时我们需要对数据设计方案的计划时间,这样才能够保证数据分析的效率。
然后给大家说一下数据挖掘,一般来说,数据挖掘就是数据收集,收集到好的数据此能够给数据分析带来很大的便利。在收集数据的过程中,好的数据就能够为数据分析提供很好的素材和依据。数据分析中一般有两种数据,第一种就是直接获得的数据,也就是第一手数据,另外一种就是加工后的数据,也就是第二手数据,做好数据收集工作就能够对数据分析提供坚实的基础。
接着说数据处理,所谓数据处理就是对收集到的数据进行加工整理,从而形成适合数据分析的格式,由此可见,数据分析是数据分析必不可少的步骤,数据处理就是为了从大量的数据以及没有规律的数据中提出有价值的数据,当然,还需要处理掉肮脏数据,为数据分析做好准备。
最后要说的就是数据分析工作了,数据分析是整个数据分析工作中最重要的一个步骤。数据分析其实就是使用多种数据分析方法以及数据分析工具进行对数据的分析,通过研究数据发现之间的规律,并通过这些规矩进行发现自身的问题以及对未来的预测。
数据分析的步骤就是上面提到的内容,大家在数据分析的时候还需要按照上面提到的顺序进行分析数据,只有这样做才能够在数据分析的过程中有一个清晰明了的思路。希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
Python HTTP 请求工具对比:urllib.request 与 requests 的核心差异与选择指南 在 Python 处理 HTTP 请求(如接口调用、数据爬取 ...
2025-09-12解决 pd.read_csv 读取长浮点数据的科学计数法问题 为帮助 Python 数据从业者解决pd.read_csv读取长浮点数据时的科学计数法问题 ...
2025-09-12CDA 数据分析师:业务数据分析步骤的落地者与价值优化者 业务数据分析是企业解决日常运营问题、提升执行效率的核心手段,其价值 ...
2025-09-12用 SQL 验证业务逻辑:从规则拆解到数据把关的实战指南 在业务系统落地过程中,“业务逻辑” 是连接 “需求设计” 与 “用户体验 ...
2025-09-11塔吉特百货孕妇营销案例:数据驱动下的精准零售革命与启示 在零售行业 “流量红利见顶” 的当下,精准营销成为企业突围的核心方 ...
2025-09-11CDA 数据分析师与战略 / 业务数据分析:概念辨析与协同价值 在数据驱动决策的体系中,“战略数据分析”“业务数据分析” 是企业 ...
2025-09-11Excel 数据聚类分析:从操作实践到业务价值挖掘 在数据分析场景中,聚类分析作为 “无监督分组” 的核心工具,能从杂乱数据中挖 ...
2025-09-10统计模型的核心目的:从数据解读到决策支撑的价值导向 统计模型作为数据分析的核心工具,并非简单的 “公式堆砌”,而是围绕特定 ...
2025-09-10CDA 数据分析师:商业数据分析实践的落地者与价值创造者 商业数据分析的价值,最终要在 “实践” 中体现 —— 脱离业务场景的分 ...
2025-09-10机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04