京公网安备 11010802034615号
经营许可证编号:京B2-20210330
就目前而言,人们通过网络了解数据分析已经知道了数据分析的好处了大数据的好处就是数据分析的使用能够为企业的决策和未来提供发展方向。很多人看到了这一点就开始研究数据分析,而数据分析师需要一定的步骤,那么大家知道不知道数据分析的步骤是什么呢?一般来说,数据分析有4个过程,这4个过程就是设计数据分析方案、数据挖掘、数据处理及呈现和数据分析。
首先给大家说一下数据分析中的设计数据分析方案,在数据分析之前,我们一定要定一个数据设计方案,有一个明确的目的以及内容,才能够在数据分析是的时候具有方向性。如果没有目标,那么分析的数据就显得杂乱无章。很可能把别人带进坑了,这样做不但会浪费时间,而且对公司没有一点好处。当数据分析的目的明确以后,我们可以把要分析的东西分解成小的任务,只有明确了数据分析的目的以后才能够确定分析内容,我们把小任务明确出来,这样才能够为后续的数据挖掘、数据分析、数据处理及数据呈现做好准备。同时我们需要对数据设计方案的计划时间,这样才能够保证数据分析的效率。
然后给大家说一下数据挖掘,一般来说,数据挖掘就是数据收集,收集到好的数据此能够给数据分析带来很大的便利。在收集数据的过程中,好的数据就能够为数据分析提供很好的素材和依据。数据分析中一般有两种数据,第一种就是直接获得的数据,也就是第一手数据,另外一种就是加工后的数据,也就是第二手数据,做好数据收集工作就能够对数据分析提供坚实的基础。
接着说数据处理,所谓数据处理就是对收集到的数据进行加工整理,从而形成适合数据分析的格式,由此可见,数据分析是数据分析必不可少的步骤,数据处理就是为了从大量的数据以及没有规律的数据中提出有价值的数据,当然,还需要处理掉肮脏数据,为数据分析做好准备。
最后要说的就是数据分析工作了,数据分析是整个数据分析工作中最重要的一个步骤。数据分析其实就是使用多种数据分析方法以及数据分析工具进行对数据的分析,通过研究数据发现之间的规律,并通过这些规矩进行发现自身的问题以及对未来的预测。
数据分析的步骤就是上面提到的内容,大家在数据分析的时候还需要按照上面提到的顺序进行分析数据,只有这样做才能够在数据分析的过程中有一个清晰明了的思路。希望这篇文章能够给大家带来帮助,最后感谢大家的阅读。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26