京公网安备 11010802034615号
经营许可证编号:京B2-20210330
很多人对于数据分析这一行业都是比较向往的,主要是因为数据分析师工资待遇很高,所谓高薪水的背后是高付出。大家对于数据分析师的职责不是很清楚的。如果清楚了数据分析师的职责只有就知道了为什么数据分析师的待遇非常高了。数据分析师的职责是懂得业务、知道如何分析、了解管理知识、会设计、会使用工具。
1、懂得业务
数据分析师必须要懂得业务中的内容,只有熟悉了业务的知识、公司业务的流程,并且有自己的见解,这样才是一个好的数据分析师。如果对于数据分析的业务不是很明白,那么就不会做好数据分析。
2、知道如何分析
知道如何分析就是指掌握数据分析基本原理与一些有效的数据分析方法,并能灵活运用到实践工作中,以便有效的开展数据分析。基本的分析方法有:对比分析法、漏斗图分析法、综合评价分析法、分组分析法、结构分析法、漏斗图分析法、交叉分析法、因素分析法、综合评价分析法、分组分析法、矩阵关联分析法等。高级的分析方法有:相关分析法、回归分析法、聚类分析法、因子分析法、对应分析法、时间序列、判别分析法、主成分分析法等。
3、了解管理知识
了解管理知识就是对于数据分析框架的搭建的要求,有一些管理知识,这样就能够有理论知识去指导这个搭建过程,如果不熟悉管理理论,就很难搭建数据分析的框架,后续的数据分析也很难进行。而管理知识对数据分析的结论也是有一定的指导的意义。
4、会设计
数据分析师需要对设计有一定的了解,这里说的懂设计就是指运用图表等方式表达数出据分析师的分析观点,必须使分析结果一目了然。而图表就是给客户最终的结果,所以说图表的设计是门大学问,设计图表就想需要对图形的选择、版式的设计、颜色的搭配等等,都需要掌握一定的设计原则。这样才能够设计出一个好的图表。
5、会使用工具
这里说的懂工具就是指掌握数据分析相关的常用工具。如果能够掌握好数据分析的工具以后,就能够提高数据分析工作的效率,其实数据分析方法就是理论,而数据分析工具就是实现数据分析方法理论的工具,所以说,面对这海量的数据,我们必须依靠数据而不是使用自身或者单个计算机去计算,只能使用数据工具进行分析数据,这样才能够快速的做好数据分析。
通过上面的描述,想必大家已经知道了数据分析的职责了吧,每一个基本素质都是需要大量的时间成本加以学习才能够获得这项能力的,希望想进入数据分析这个行业的人提前了解一下数据分析师这个职业,这样才能够知道自己到底是否适合这项工作,最后希望这篇文章能够给大家带来帮助。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26