
现如今,大数据越来越流行了,可以说现在无论是什么公司,都积累了大量的原始数据,数据的作用想必大家都是比较清楚的,而在这个信息对称的时代,数据分析师的工作将为公司指明发展的道路,在企业的地位备受重视。那么数据分析师需要学习什么知识呢?一般来说,需要学习数据库、数据整理、懂设计、专业技能、提升个人能力、贴近数据文化等等。
一、对数据库有充分的理解
大家都知道,一般工厂中有存放产品的库房,所以就不难理解数据库的意义了,一般来说,数据都是大量的,如果存放这些大量的数据就需要一个类似于工厂库房一样的东西里面,数据的存储是需要库房,就叫做数据库。数据分析师必须知道数据库的用途以及存在的意义,这是因为数据库是存储数据的地方。数据库有很多,如CouchDB,MongoDB,MySQL,PostgreSQL,Cassandra等。理解数据库并且能熟练使用它,这是数据分析师的一个基本能力。
二、能够掌握数据整理
数据分析师必须学会数据整理,所谓数据整理,是将原始数据转换成方便实用的格式。很多数据都不能直接的看到我们需要的东西,所以,通过整理数据就能够使数据可视化,就是创建和研究数据的视觉表现。数据报表是将数据分析和分析出的结果制作成报告。也是数据分析师的一个后续工作。这些技能是做数据分析师的主要技能。
三、掌握专业技能
很多数据分析师需要有专业技能,这里说的专业技能有社会学技能、财物管理、统计学技能、以及心理学。统计学是数据分析的基础,掌握统计学的基本知识是数据分析师的基本功。对于社会学技能来说,从社会化角度看,人都有社会性质,收到群体心理的影响。倘若数据分析师没有社会学基本技能,很难对市场现象做出合理解释。当然,如果还能懂得财务管理知识和心理学知识那就最好不过了。这些都将会使数据分析师做数据分析的过程更容易。
四、懂得设计
数据分析师应该会制作报表成果,还应该注重图表的设计。这样才能够让数据更直观的呈现在人们面前。在运用图表表达数据分析师的观点时,图表的设计会直接影响到图形的选择、版式的设计、颜色的搭配等,只有掌握设计原则以后才能让结果清楚明了。如果图表十分乱,这就不能够让数据直接的表现出来。
五、能够随时贴近数据文化
数据分析中如果能够对各个数据文化有一个了解的话,就能够对数据有一个更加充足的认知。如果数据分析师拥有了数据分析的基本能力,还是需要学习很多数据的知识,上面提到的内容就是数据的基本需要的知识,靠这些是远远不够的,还要对数据文化进行详细的研读,这样才能够提高数据的分析能力。
六、提升个人能力
有了产品可以将数据展示出来,还需要具备基本的分析师能力。首先,要了解模型背后的逻辑,不能单纯地在模型中看,而要放到整个项目的上下文中去看。要理解数据的信息,形成一个整体系统,这样才能够做好细节。
拥有这些技能,再去做数据分析,数据也就比较容易多了,数据分析师要了解的知识就是上面提到的这些,需要学习的内容就是数据库、数据整理、懂设计、专业技能、提升个人能力、贴近数据文化等等。希望这篇文章能够帮助到大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
机器学习解决实际问题的核心关键:从业务到落地的全流程解析 在人工智能技术落地的浪潮中,机器学习作为核心工具,已广泛应用于 ...
2025-09-09SPSS 编码状态区域中 Unicode 的功能与价值解析 在 SPSS(Statistical Product and Service Solutions,统计产品与服务解决方案 ...
2025-09-09CDA 数据分析师:驾驭商业数据分析流程的核心力量 在商业决策从 “经验驱动” 向 “数据驱动” 转型的过程中,商业数据分析总体 ...
2025-09-09R 语言:数据科学与科研领域的核心工具及优势解析 一、引言 在数据驱动决策的时代,无论是科研人员验证实验假设(如前文中的 T ...
2025-09-08T 检验在假设检验中的应用与实践 一、引言 在科研数据分析、医学实验验证、经济指标对比等领域,常常需要判断 “样本间的差异是 ...
2025-09-08在商业竞争日益激烈的当下,“用数据说话” 已从企业的 “加分项” 变为 “生存必需”。然而,零散的数据分析无法持续为业务赋能 ...
2025-09-08随机森林算法的核心特点:原理、优势与应用解析 在机器学习领域,随机森林(Random Forest)作为集成学习(Ensemble Learning) ...
2025-09-05Excel 区域名定义:从基础到进阶的高效应用指南 在 Excel 数据处理中,频繁引用单元格区域(如A2:A100、B3:D20)不仅容易出错, ...
2025-09-05CDA 数据分析师:以六大分析方法构建数据驱动业务的核心能力 在数据驱动决策成为企业共识的当下,CDA(Certified Data Analyst) ...
2025-09-05SQL 日期截取:从基础方法到业务实战的全维度解析 在数据处理与业务分析中,日期数据是连接 “业务行为” 与 “时间维度” 的核 ...
2025-09-04在卷积神经网络(CNN)的发展历程中,解决 “梯度消失”“特征复用不足”“模型参数冗余” 一直是核心命题。2017 年提出的密集连 ...
2025-09-04CDA 数据分析师:驾驭数据范式,释放数据价值 在数字化转型浪潮席卷全球的当下,数据已成为企业核心生产要素。而 CDA(Certified ...
2025-09-04K-Means 聚类:无监督学习中数据分群的核心算法 在数据分析领域,当我们面对海量无标签数据(如用户行为记录、商品属性数据、图 ...
2025-09-03特征值、特征向量与主成分:数据降维背后的线性代数逻辑 在机器学习、数据分析与信号处理领域,“降维” 是破解高维数据复杂性的 ...
2025-09-03CDA 数据分析师与数据分析:解锁数据价值的关键 在数字经济高速发展的今天,数据已成为企业核心资产与社会发展的重要驱动力。无 ...
2025-09-03解析 loss.backward ():深度学习中梯度汇总与同步的自动触发核心 在深度学习模型训练流程中,loss.backward()是连接 “前向计算 ...
2025-09-02要解答 “画 K-S 图时横轴是等距还是等频” 的问题,需先明确 K-S 图的核心用途(检验样本分布与理论分布的一致性),再结合横轴 ...
2025-09-02CDA 数据分析师:助力企业破解数据需求与数据分析需求难题 在数字化浪潮席卷全球的当下,数据已成为企业核心战略资产。无论是市 ...
2025-09-02Power BI 度量值实战:基于每月收入与税金占比计算累计税金分摊金额 在企业财务分析中,税金分摊是成本核算与利润统计的核心环节 ...
2025-09-01巧用 ALTER TABLE rent ADD INDEX:租房系统数据库性能优化实践 在租房管理系统中,rent表是核心业务表之一,通常存储租赁订单信 ...
2025-09-01