京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现如今,大数据越来越流行了,可以说现在无论是什么公司,都积累了大量的原始数据,数据的作用想必大家都是比较清楚的,而在这个信息对称的时代,数据分析师的工作将为公司指明发展的道路,在企业的地位备受重视。那么数据分析师需要学习什么知识呢?一般来说,需要学习数据库、数据整理、懂设计、专业技能、提升个人能力、贴近数据文化等等。
一、对数据库有充分的理解
大家都知道,一般工厂中有存放产品的库房,所以就不难理解数据库的意义了,一般来说,数据都是大量的,如果存放这些大量的数据就需要一个类似于工厂库房一样的东西里面,数据的存储是需要库房,就叫做数据库。数据分析师必须知道数据库的用途以及存在的意义,这是因为数据库是存储数据的地方。数据库有很多,如CouchDB,MongoDB,MySQL,PostgreSQL,Cassandra等。理解数据库并且能熟练使用它,这是数据分析师的一个基本能力。
二、能够掌握数据整理
数据分析师必须学会数据整理,所谓数据整理,是将原始数据转换成方便实用的格式。很多数据都不能直接的看到我们需要的东西,所以,通过整理数据就能够使数据可视化,就是创建和研究数据的视觉表现。数据报表是将数据分析和分析出的结果制作成报告。也是数据分析师的一个后续工作。这些技能是做数据分析师的主要技能。
三、掌握专业技能
很多数据分析师需要有专业技能,这里说的专业技能有社会学技能、财物管理、统计学技能、以及心理学。统计学是数据分析的基础,掌握统计学的基本知识是数据分析师的基本功。对于社会学技能来说,从社会化角度看,人都有社会性质,收到群体心理的影响。倘若数据分析师没有社会学基本技能,很难对市场现象做出合理解释。当然,如果还能懂得财务管理知识和心理学知识那就最好不过了。这些都将会使数据分析师做数据分析的过程更容易。
四、懂得设计
数据分析师应该会制作报表成果,还应该注重图表的设计。这样才能够让数据更直观的呈现在人们面前。在运用图表表达数据分析师的观点时,图表的设计会直接影响到图形的选择、版式的设计、颜色的搭配等,只有掌握设计原则以后才能让结果清楚明了。如果图表十分乱,这就不能够让数据直接的表现出来。
五、能够随时贴近数据文化
数据分析中如果能够对各个数据文化有一个了解的话,就能够对数据有一个更加充足的认知。如果数据分析师拥有了数据分析的基本能力,还是需要学习很多数据的知识,上面提到的内容就是数据的基本需要的知识,靠这些是远远不够的,还要对数据文化进行详细的研读,这样才能够提高数据的分析能力。
六、提升个人能力
有了产品可以将数据展示出来,还需要具备基本的分析师能力。首先,要了解模型背后的逻辑,不能单纯地在模型中看,而要放到整个项目的上下文中去看。要理解数据的信息,形成一个整体系统,这样才能够做好细节。
拥有这些技能,再去做数据分析,数据也就比较容易多了,数据分析师要了解的知识就是上面提到的这些,需要学习的内容就是数据库、数据整理、懂设计、专业技能、提升个人能力、贴近数据文化等等。希望这篇文章能够帮助到大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26