京公网安备 11010802034615号
经营许可证编号:京B2-20210330
现如今,大数据越来越流行了,可以说现在无论是什么公司,都积累了大量的原始数据,数据的作用想必大家都是比较清楚的,而在这个信息对称的时代,数据分析师的工作将为公司指明发展的道路,在企业的地位备受重视。那么数据分析师需要学习什么知识呢?一般来说,需要学习数据库、数据整理、懂设计、专业技能、提升个人能力、贴近数据文化等等。
一、对数据库有充分的理解
大家都知道,一般工厂中有存放产品的库房,所以就不难理解数据库的意义了,一般来说,数据都是大量的,如果存放这些大量的数据就需要一个类似于工厂库房一样的东西里面,数据的存储是需要库房,就叫做数据库。数据分析师必须知道数据库的用途以及存在的意义,这是因为数据库是存储数据的地方。数据库有很多,如CouchDB,MongoDB,MySQL,PostgreSQL,Cassandra等。理解数据库并且能熟练使用它,这是数据分析师的一个基本能力。
二、能够掌握数据整理
数据分析师必须学会数据整理,所谓数据整理,是将原始数据转换成方便实用的格式。很多数据都不能直接的看到我们需要的东西,所以,通过整理数据就能够使数据可视化,就是创建和研究数据的视觉表现。数据报表是将数据分析和分析出的结果制作成报告。也是数据分析师的一个后续工作。这些技能是做数据分析师的主要技能。
三、掌握专业技能
很多数据分析师需要有专业技能,这里说的专业技能有社会学技能、财物管理、统计学技能、以及心理学。统计学是数据分析的基础,掌握统计学的基本知识是数据分析师的基本功。对于社会学技能来说,从社会化角度看,人都有社会性质,收到群体心理的影响。倘若数据分析师没有社会学基本技能,很难对市场现象做出合理解释。当然,如果还能懂得财务管理知识和心理学知识那就最好不过了。这些都将会使数据分析师做数据分析的过程更容易。
四、懂得设计
数据分析师应该会制作报表成果,还应该注重图表的设计。这样才能够让数据更直观的呈现在人们面前。在运用图表表达数据分析师的观点时,图表的设计会直接影响到图形的选择、版式的设计、颜色的搭配等,只有掌握设计原则以后才能让结果清楚明了。如果图表十分乱,这就不能够让数据直接的表现出来。
五、能够随时贴近数据文化
数据分析中如果能够对各个数据文化有一个了解的话,就能够对数据有一个更加充足的认知。如果数据分析师拥有了数据分析的基本能力,还是需要学习很多数据的知识,上面提到的内容就是数据的基本需要的知识,靠这些是远远不够的,还要对数据文化进行详细的研读,这样才能够提高数据的分析能力。
六、提升个人能力
有了产品可以将数据展示出来,还需要具备基本的分析师能力。首先,要了解模型背后的逻辑,不能单纯地在模型中看,而要放到整个项目的上下文中去看。要理解数据的信息,形成一个整体系统,这样才能够做好细节。
拥有这些技能,再去做数据分析,数据也就比较容易多了,数据分析师要了解的知识就是上面提到的这些,需要学习的内容就是数据库、数据整理、懂设计、专业技能、提升个人能力、贴近数据文化等等。希望这篇文章能够帮助到大家。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在数据可视化领域,单一图表往往难以承载多维度信息 —— 力导向图擅长展现节点间的关联结构与空间分布,却无法直观呈现 “流量 ...
2025-10-27这个问题问到了 Tableau 中两个核心行级函数的经典组合,理解它能帮你快速实现 “相对位置占比” 的分析需求。“index ()/size ( ...
2025-10-27对 CDA(Certified Data Analyst)数据分析师而言,“假设检验” 绝非 “套用统计公式的机械操作”,而是 “将模糊的业务猜想转 ...
2025-10-27在数字化运营中,“凭感觉做决策” 早已成为过去式 —— 运营指标作为业务增长的 “晴雨表” 与 “导航仪”,直接决定了运营动作 ...
2025-10-24在卷积神经网络(CNN)的训练中,“卷积层(Conv)后是否添加归一化(如 BN、LN)和激活函数(如 ReLU、GELU)” 是每个开发者都 ...
2025-10-24在数据决策链条中,“统计分析” 是挖掘数据规律的核心,“可视化” 是呈现规律的桥梁 ——CDA(Certified Data Analyst)数据分 ...
2025-10-24在 “神经网络与卡尔曼滤波融合” 的理论基础上,Python 凭借其丰富的科学计算库(NumPy、FilterPy)、深度学习框架(PyTorch、T ...
2025-10-23在工业控制、自动驾驶、机器人导航、气象预测等领域,“状态估计” 是核心任务 —— 即从含噪声的观测数据中,精准推断系统的真 ...
2025-10-23在数据分析全流程中,“数据清洗” 恰似烹饪前的食材处理:若食材(数据)腐烂变质、混杂异物(脏数据),即便拥有精湛的烹饪技 ...
2025-10-23在人工智能领域,“大模型” 已成为近年来的热点标签:从参数超 1750 亿的 GPT-3,到万亿级参数的 PaLM,再到多模态大模型 GPT-4 ...
2025-10-22在 MySQL 数据库的日常运维与开发中,“更新数据是否会影响读数据” 是一个高频疑问。这个问题的答案并非简单的 “是” 或 “否 ...
2025-10-22在企业数据分析中,“数据孤岛” 是制约分析深度的核心瓶颈 —— 用户数据散落在注册系统、APP 日志、客服记录中,订单数据分散 ...
2025-10-22在神经网络设计中,“隐藏层个数” 是决定模型能力的关键参数 —— 太少会导致 “欠拟合”(模型无法捕捉复杂数据规律,如用单隐 ...
2025-10-21在特征工程流程中,“单变量筛选” 是承上启下的关键步骤 —— 它通过分析单个特征与目标变量的关联强度,剔除无意义、冗余的特 ...
2025-10-21在数据分析全流程中,“数据读取” 常被误解为 “简单的文件打开”—— 双击 Excel、执行基础 SQL 查询即可完成。但对 CDA(Cert ...
2025-10-21在实际业务数据分析中,我们遇到的大多数数据并非理想的正态分布 —— 电商平台的用户消费金额(少数用户单次消费上万元,多数集 ...
2025-10-20在数字化交互中,用户的每一次操作 —— 从电商平台的 “浏览商品→加入购物车→查看评价→放弃下单”,到内容 APP 的 “点击短 ...
2025-10-20在数据分析的全流程中,“数据采集” 是最基础也最关键的环节 —— 如同烹饪前需备好新鲜食材,若采集的数据不完整、不准确或不 ...
2025-10-20在数据成为新时代“石油”的今天,几乎每个职场人都在焦虑: “为什么别人能用数据驱动决策、升职加薪,而我面对Excel表格却无从 ...
2025-10-18数据清洗是 “数据价值挖掘的前置关卡”—— 其核心目标是 “去除噪声、修正错误、规范格式”,但前提是不破坏数据的真实业务含 ...
2025-10-17