京公网安备 11010802034615号
经营许可证编号:京B2-20210330
CDA数据分析师原创作品,转载需授权
数据分析师可谓是近几年经常被业界提及和行业火热招聘的一类职位,从15年大数据兴起,到现在18年临近年末,将近4个年头的时光,大数据发展迅猛,数据分析师也跟着翻涌起来,成为今时今日最有潜力、最有前景的社会职位之一。人们对于数据分析师的岗位趋之若鹜,国内高校也争相开始设置大数据与数据分析相关专业,人们对数据分析的认知和需求越来越深,越来越多的人期望加入数据分析师行列。那么,该如何成为合格的数据分析师呢,成为一名合格的数据分析师需要考取的证书又有哪些呢?下面跟大家好好普及普及。
首先,数据分析师需要具备符合现代企业公司要求的基本技能。我们随机选取招聘网站上的招聘要求进行一下分析。
职位要求:
1、熟悉数据库基本原理,熟练运用SQL;
2、熟练操作excel、PPT;
3、熟悉数据挖掘的基本原理,熟练操作Python、Pandas等数据分析/挖掘工具的优先;
4、良好的数据敏感度,能从海量数据中提炼核心结果;
5、熟练独立编写商业数据分析报告,及时发现和分析其中隐含的变化和问题,给出建议;
6、良好的沟通能力和团队合作意识,较强的学习能力,能够承担一定的工作压力。
从企业普遍的招聘需求可以看出,企业要求主要分为两部分。第一部分为硬技能,包括数学和计算机相关的技能;第二部分为软实力,主要集中在性格、个人行为及潜力等方面。软实力需要具备一定的沟通能力、表达能力和基本的职场素质,大多数人基本都能通过考核。硬实力可以通过大学课程、自学或者报学习班等形式进行提升,达到企业需求。
对于硬实力,如果想要透彻和快速的掌握,就需要系统、有规律的学习,保证知识的连贯性。若想有规律的学习,下面引用CDA脱产班的学习方法给大家做一个参考:CDA数据分析就业班针对时间充裕、零基础的专科、本科在校生,以及待业、期待从事数据分析的工作人员提供3个月全脱产集训,毕业推荐相关工作单位。CDA数据分析就业班每期至少十位以上相关领域专家授课,以CDA数据分析师标准大纲要求,从数据库管理—统计理论方法—数据分析主要软件应用(如:Excel、SAS、SPSS、Python、R等)—数据挖掘算法模型,一整套数据分析流程技术进行系统讲解。还将从金融、医药、保险、电商、零售、房地产等行业需求出发,使用实际案例手把手将数据分析技术传授给学员,使CDA就业班课程更符合就业要求,达到企业用人标准,快速在大数据时代找准工作定位。学员毕业要求能够独立完成商业数据分析项目。即硬技能需要掌握上述的各项数据分析工具和完成几个数据分析相关的实际案例。
进入数据分析领域后,数据分析师还需要考取一些证书提升自己职场的含金量。现在数据分析师有3个等级:级别Level I(业务分析师)、Level II(建模分析师)和Level II(大数据分析师)、Level III(数据科学家)。考取证书后,对自己的职场选择会有很大的帮助,很多企业明确标注数据分析持证人优先。
数据分析师已成为大势所趋,它有着一定的技术门槛,并且伴随经验的积累,职位的竞争力也会越强。如今想转行或正在进入数据分析行列的人越来越多,可谓人才济济,僧多粥少,加上数据分析行业日渐完善和规范,衷心祝愿各位数据分析师同仁可以在数据分析或大数据领域开创自己美好的职业生涯,同时也通过每一位数据分析师的个人努力汇聚成整个行业的事业线,冲刺着数据分析行业跨入一个新的高峰。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在Python文件操作场景中,批量处理文件、遍历目录树是高频需求——无论是统计某文件夹下的文件数量、筛选特定类型文件,还是批量 ...
2026-01-05在神经网络模型训练过程中,开发者最担心的问题之一,莫过于“训练误差突然增大”——前几轮还平稳下降的损失值(Loss),突然在 ...
2026-01-05在数据驱动的业务场景中,“垃圾数据进,垃圾结果出”是永恒的警示。企业收集的数据往往存在缺失、异常、重复、格式混乱等问题, ...
2026-01-05在数字化时代,用户行为数据已成为企业的核心资产之一。从用户打开APP的首次点击,到浏览页面的停留时长,再到最终的购买决策、 ...
2026-01-04在数据分析领域,数据稳定性是衡量数据质量的核心维度之一,直接决定了分析结果的可靠性与决策价值。稳定的数据能反映事物的固有 ...
2026-01-04在CDA(Certified Data Analyst)数据分析师的工作链路中,数据读取是连接原始数据与后续分析的关键桥梁。如果说数据采集是“获 ...
2026-01-04尊敬的考生: 您好! 我们诚挚通知您,CDA Level III 考试大纲将于 2025 年 12 月 31 日实施重大更新,并正式启用,2026年3月考 ...
2025-12-31“字如其人”的传统认知,让不少“手残党”在需要签名的场景中倍感尴尬——商务签约时的签名歪歪扭扭,朋友聚会的签名墙不敢落笔 ...
2025-12-31在多元统计分析的因子分析中,“得分系数”是连接原始观测指标与潜在因子的关键纽带,其核心作用是将多个相关性较高的原始指标, ...
2025-12-31对CDA(Certified Data Analyst)数据分析师而言,高质量的数据是开展后续分析、挖掘业务价值的基础,而数据采集作为数据链路的 ...
2025-12-31在中介效应分析(或路径分析)中,间接效应是衡量“自变量通过中介变量影响因变量”这一间接路径强度与方向的核心指标。不同于直 ...
2025-12-30数据透视表是数据分析中高效汇总、多维度分析数据的核心工具,能快速将杂乱数据转化为结构化的汇总报表。在实际分析场景中,我们 ...
2025-12-30在金融投资、商业运营、用户增长等数据密集型领域,量化策略凭借“数据驱动、逻辑可验证、执行标准化”的优势,成为企业提升决策 ...
2025-12-30CDA(Certified Data Analyst),是在数字经济大背景和人工智能时代趋势下,源自中国,走向世界,面向全行业的专业技能认证,旨 ...
2025-12-29在数据分析领域,周期性是时间序列数据的重要特征之一——它指数据在一定时间间隔内重复出现的规律,广泛存在于经济、金融、气象 ...
2025-12-29数据分析师的核心价值在于将海量数据转化为可落地的商业洞察,而高效的工具则是实现这一价值的关键载体。从数据采集、清洗整理, ...
2025-12-29在金融、零售、互联网等数据密集型行业,量化策略已成为企业提升决策效率、挖掘商业价值的核心工具。CDA(Certified Data Analys ...
2025-12-29CDA中国官网是全国统一的数据分析师认证报名网站,由认证考试委员会与持证人会员、企业会员以及行业知名第三方机构共同合作,致 ...
2025-12-26在数字化转型浪潮下,审计行业正经历从“传统手工审计”向“大数据智能审计”的深刻变革。教育部发布的《大数据与审计专业教学标 ...
2025-12-26统计学作为数学的重要分支,是连接数据与决策的桥梁。随着数据规模的爆炸式增长和复杂问题的涌现,传统统计方法已难以应对高维、 ...
2025-12-26