京公网安备 11010802034615号
经营许可证编号:京B2-20210330
关于作者:
Cassie Kozyrkov,Google首席决策师。致力于统计学, 机器学习 /人工智能、数据、决策科学。
数据科学是让数据变得有用的学科。在本文中我将对数据科学中以下三个概念进行解读:
统计
数据挖掘/分析
1. 定义数据科学
看到数据科学这个术语的早期历史,你会发现当时有两个概念是密不可分的。
大数据意味着要更多地利用计算机
统计学很难把纸上的算法通过计算机实现
因此,数据科学诞生了。最开始数据科学家的的定义是“能够编程的统计学家”。如今看来,这个说法并不准确,但首先让我们看到数据科学本身。
2003年的数据科学期刊中曾提出:“‘数据科学’意味着任何与数据有关的内容”。我很同意这个观点,现在一切都离不开数据。
之后,我们看到了很多不同的观点,比如Conway的维恩图(下图),以及Mason和Wiggins的经典观点。
Drew Conway对数据科学的定义
我个人更喜欢维基百科上的定义:
数据科学是“结合了统计、数据分析、机器学习及其相关方法的概念”,以便用数据“理解和分析实际现象”。
这有些复杂了,让我们精简一下,即:
“数据科学是让数据有用的学科。”
你现在可能会想,但这也太精简了,“有用”这个词怎么能囊括所有这些术语呢?
那么让我们先看到下面的图。
统计学家和机器学习工程师之间的区别,并不是前者使用R语言而后者使用Python。由于许多原因,用SQL、R、Python进行分类是不明智的,如今你甚至可以用SQL进行机器学习。
新手还喜欢通过算法进行区分,许多大学课程也是这么安排的,这也是不明智的。最好不要用直方图、t检验以及神经网络进行分类。坦率地说,如果你很聪明,其实你可以用相同的算法解决任何数据科学问题。
我建议可以这样进行区分:
这指的是什么呢?当然是决定。你可以根据所需的事实,通过描述性分析得出决策。
我们的行动和决定会影响周围的世界。我们之前谈到要让数据变得有用,而这与现实世界的行动是紧密相关的。
以下是决策导向图,完成这三点能够让数据变得有用。
2. 数据挖掘
如果你不知道想做出什么样的决定,那么最好的做法就是去寻找灵感。这就称为数据挖掘、数据分析、描述性分析、探索性数据分析或(EDA)或知识发现(KD)。
分析的黄金法则:只对你所看到的做出结论。
你可以将数据集想象为在暗室中发现的一堆底片。数据挖掘就是让设备尽快曝光这些照片,看是否能从中得出启发。数据挖掘的黄金法则是:只能对你能看到的做出结论,不要对你看不到的内容做出判断,因为你需要统计数据等更多的专业知识。
数据挖掘的专业知识取决于检查数据的速度。一开始暗房会令人生畏,但其实也没什么大不了的,只是学会使用设备就行了。当你开始乐在其中时,你就可以称为数据分析师了;当你能够飞速地曝光照片时,你就可以称为分析师专家了。
3. 统计推断
灵感很容易获得,但严谨来之不易。如果你想重复利用数据,那么则需要专业的培训。作为本科和硕士都学统计学专业的人,我认为统计推断(简称统计)是三个领域中最难且最具哲学内涵的。想学好统计需要花费大量时间。
如果你打算做出高质量、风险可控的重要决策,那么你需要在分析团队中加入统计技能。在不确定的情况下,统计学是能改变你想法的学科。
4. 机器学习
机器学习实质上是使用例子而不是指令来实现操作。关于机器学习我曾写过一些文章,如关于机器学习与AI 的区别;如何入门机器学习等,如果感兴趣的话可以看看。
The simplest explanation of machine learning you’ll ever read
https://hackernoon.com/the-simplest-explanation-of-machine-learning-youll-ever-read-bebc0700047c
Are you using the term 'AI' incorrectly?
https://medium.com/@kozyrkov/are-you-using-the-term-ai-incorrectly-911ac23ab4f5
Why businesses fail at machine learning
https://hackernoon.com/why-businesses-fail-at-machine-learning-fbff41c4d5db
5. 数据工程
那么数据工程是什么呢?数据工程指的是为数据科学团队提供数据的工作。数据工程本身就是一个复杂的领域,它更接近软件工程,而不是统计学。
数据工程和数据科学之间的差异是前后的区别。获取数据前的大部分技术工作都可以简单地称为“数据工程”,而得到数据后我们所做的一切都是“数据科学”。
6. 决策智能
决策智能是关于决策的,包括对根据大量数据进行决策,因此这也使其成为一个工程学科。它利用社会和管理科学的理念,增强数据科学的应用。
决策智能是社会和管理科学的组成部分。换而言之,它是数据科学的超集,而不涉及为通用用途创建基本方法之类的研究工作。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在信贷业务中,违约率是衡量信贷资产质量、把控信用风险、制定风控策略的核心指标,其统计分布特征直接决定了风险定价的合理性、 ...
2026-02-03在数字化业务迭代中,AB测试已成为验证产品优化、策略调整、运营活动效果的核心工具。但多数业务场景中,单纯的“AB组差异对比” ...
2026-02-03企业战略决策的科学性,决定了其长远发展的格局与竞争力。战略分析方法作为一套系统化、专业化的思维工具,为企业研判行业趋势、 ...
2026-02-03在统计调查与数据分析中,抽样方法分为简单随机抽样与复杂抽样两大类。简单随机抽样因样本均匀、计算简便,是基础的抽样方式,但 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02在数据驱动企业发展的今天,“数据分析”已成为企业经营决策的核心支撑,但实践中,战略数据分析与业务数据分析两个概念常被混淆 ...
2026-02-02B+树作为数据库索引的核心数据结构,其高效的查询、插入、删除性能,离不开节点间指针的合理设计。在日常学习和数据库开发中,很 ...
2026-01-30在数据库开发中,UUID(通用唯一识别码)是生成唯一主键、唯一标识的常用方式,其标准格式包含4个短横线(如550e8400-e29b-41d4- ...
2026-01-30商业数据分析的价值落地,离不开标准化、系统化的总体流程作为支撑;而CDA(Certified Data Analyst)数据分析师,作为经过系统 ...
2026-01-30在数据分析、质量控制、科研实验等场景中,数据波动性(离散程度)的精准衡量是判断数据可靠性、稳定性的核心环节。标准差(Stan ...
2026-01-29在数据分析、质量检测、科研实验等领域,判断数据间是否存在本质差异是核心需求,而t检验、F检验是实现这一目标的经典统计方法。 ...
2026-01-29统计制图(数据可视化)是数据分析的核心呈现载体,它将抽象的数据转化为直观的图表、图形,让数据规律、业务差异与潜在问题一目 ...
2026-01-29箱线图(Box Plot)作为数据分布可视化的核心工具,能清晰呈现数据的中位数、四分位数、异常值等关键统计特征,广泛应用于数据分 ...
2026-01-28在回归分析、机器学习建模等数据分析场景中,多重共线性是高频数据问题——当多个自变量间存在较强的线性关联时,会导致模型系数 ...
2026-01-28数据分析的价值落地,离不开科学方法的支撑。六种核心分析方法——描述性分析、诊断性分析、预测性分析、规范性分析、对比分析、 ...
2026-01-28在机器学习与数据分析领域,特征是连接数据与模型的核心载体,而特征重要性分析则是挖掘数据价值、优化模型性能、赋能业务决策的 ...
2026-01-27关联分析是数据挖掘领域中挖掘数据间潜在关联关系的经典方法,广泛应用于零售购物篮分析、电商推荐、用户行为路径挖掘等场景。而 ...
2026-01-27数据分析的基础范式,是支撑数据工作从“零散操作”走向“标准化落地”的核心方法论框架,它定义了数据分析的核心逻辑、流程与目 ...
2026-01-27在数据分析、后端开发、业务运维等工作中,SQL语句是操作数据库的核心工具。面对复杂的表结构、多表关联逻辑及灵活的查询需求, ...
2026-01-26支持向量机(SVM)作为机器学习中经典的分类算法,凭借其在小样本、高维数据场景下的优异泛化能力,被广泛应用于图像识别、文本 ...
2026-01-26