
你想知道的大数据知识都在这里
大数据主要是指企业中日常生成的,大量的有组织以及无组织的数据。在这种情况下,组织如何处理这些数据,与数据量是无关的。对大数据分析可以产生改善战略商务决策(Strategic business decision-making)的洞察力。
大数据的重要性
如前所述,大数据的价值不在于您拥有多少信息,而在于您要如何利用它。您可以从任何一个点收集数据(并对其进行检查),以找到下面四种情况的解决方案:
当您耗费大量精力分析聚合大数据时,下面这些业务关联的任务就可能实现:
图1 大数据基础结构
大数据实例
大数据类型
大数据可以分为以下三大类。
大数据的四个 "V" 值
一些共同特征如图 2 所示。
大数据架构包含一致的、可扩展的,以及完全计算机化的数据管道(Data pipelines)。构建这种基础架构需要具有深入了解堆中的每一层的能力,即从集群设计(Cluster design)开始,直到设置负责处理数据的顶级链(Top chain)。图 3 展示了堆栈的复杂性以及数据管道工程如何触及其每个部分。
在图 3 中,数据管道收集原始数据并将其转化为有价值的东西。同时,大数据工程师必须计划好数据会发生什么情况,数据存储在集群中的方式,内部许可的访问方式,用于处理数据的设备,以及提供给外界访问的模式。那些设计和实现这种架构的人被称为大数据工程师。
大数据技术
众所周知,大数据的主题非常广泛,并且渗透到了许多新技术的发展中。以下对一些技术的概述旨在帮助用户对大数据进行改造。
1. MapReduce(映射化简):这使得任务的实现具有能够跨越数千台服务器的可扩展性。
2. Hadoop:这是 MapReduce 最令人钦佩的执行方式,它是一个完全开源的处理大数据的平台。Hadoop 足够灵活,它能够处理多种数据源,例如聚合数据以进行大规模处理,从数据库读取数据等。
3. Hive:这是一个类似 SQL 的链接,允许 BI(商业智能) 应用程序在 Hadoop 集群旁运行查询。这是由 Facebook 开发的,它已经被开源了一段时间,并且它还是 Hadoop 框架的更高层次的概念。此外,它允许每个人对存储在 Hadoop 集群中的数据进行查询,并改进了 Hadoop 的功能,使其成为了 BI 用户的理想选择。
图3 大数据体系结构
大数据处理的优势
处理大数据的能力具有多种益处。
挑战
虽然很容易陷入各种关于大数据的炒作之中,但它未得到充分利用的原因之一就是,在使用到它的技术中仍有许多挑战需要解决。其中一些挑战如下:
大数据的可访问性(Accessibility),便宜的硬件产品,以及新的信息管理和分析软件聚合在一起,在数据分析的历史中创造了独特的时刻。我们现在有能力快速且经济高效地审查这些惊人的数据集,这是有史以来的第一次。这种能力象征着真正的飞跃,同时也象征着一个在工作效率、收入和成功方面大幅进步的机会。
数据分析咨询请扫描二维码
若不方便扫码,搜微信号:CDAshujufenxi
在使用 Excel 数据透视表进行多维度数据汇总时,折叠功能是梳理数据层级的核心工具 —— 通过点击 “+/-” 符号可展开明细数据或 ...
2025-09-28在使用 Pandas 处理 CSV、TSV 等文本文件时,“引号” 是最容易引发格式混乱的 “隐形杀手”—— 比如字段中包含逗号(如 “北京 ...
2025-09-28在 CDA(Certified Data Analyst)数据分析师的技能工具箱中,数据查询语言(尤其是 SQL)是最基础、也最核心的 “武器”。无论 ...
2025-09-28Cox 模型时间依赖性检验:原理、方法与实战应用 在生存分析领域,Cox 比例风险模型(Cox Proportional Hazards Model)是分析 “ ...
2025-09-26检测因子类型的影响程度大小:评估标准、实战案例与管控策略 在检测分析领域(如环境监测、食品质量检测、工业产品合规性测试) ...
2025-09-26CDA 数据分析师:以数据库为基石,筑牢数据驱动的 “源头防线” 在数据驱动业务的链条中,“数据从哪里来” 是 CDA(Certified D ...
2025-09-26线性相关点分布的四种基本类型:特征、识别与实战应用 在数据分析与统计学中,“线性相关” 是描述两个数值变量间关联趋势的核心 ...
2025-09-25深度神经网络神经元个数确定指南:从原理到实战的科学路径 在深度神经网络(DNN)的设计中,“神经元个数” 是决定模型性能的关 ...
2025-09-25在企业数字化进程中,不少团队陷入 “指标困境”:仪表盘上堆砌着上百个指标,DAU、转化率、营收等数据实时跳动,却无法回答 “ ...
2025-09-25MySQL 服务器内存碎片:成因、检测与内存持续增长的解决策略 在 MySQL 运维中,“内存持续增长” 是常见且隐蔽的性能隐患 —— ...
2025-09-24人工智能重塑工程质量检测:核心应用、技术路径与实践案例 工程质量检测是保障建筑、市政、交通、水利等基础设施安全的 “最后一 ...
2025-09-24CDA 数据分析师:驾驭通用与场景指标,解锁数据驱动的精准路径 在数据驱动业务的实践中,指标是连接数据与决策的核心载体。但并 ...
2025-09-24在数据驱动的业务迭代中,AB 实验系统(负责验证业务优化效果)与业务系统(负责承载用户交互与核心流程)并非独立存在 —— 前 ...
2025-09-23CDA 业务数据分析:6 步闭环,让数据驱动业务落地 在企业数字化转型中,CDA(Certified Data Analyst)数据分析师的核心价值,并 ...
2025-09-23CDA 数据分析师:以指标为钥,解锁数据驱动价值 在数字化转型的浪潮中,“用数据说话” 已成为企业决策的共识。但数据本身是零散 ...
2025-09-23当 “算法” 成为数据科学、人工智能、业务决策领域的高频词时,一种隐形的认知误区正悄然蔓延 —— 有人将分析结果不佳归咎于 ...
2025-09-22在数据分析、金融计算、工程评估等领域,“平均数” 是描述数据集中趋势最常用的工具之一。但多数人提及 “平均数” 时,默认指 ...
2025-09-22CDA 数据分析师:参数估计助力数据决策的核心力量 在数字化浪潮席卷各行各业的当下,数据已成为驱动业务增长、优化运营效率的核 ...
2025-09-22训练与验证损失骤升:机器学习训练中的异常诊断与解决方案 在机器学习模型训练过程中,“损失曲线” 是反映模型学习状态的核心指 ...
2025-09-19解析 DataHub 与 Kafka:数据生态中两类核心工具的差异与协同 在数字化转型加速的今天,企业对数据的需求已从 “存储” 转向 “ ...
2025-09-19